Skip to main content
Log in

Trajectory optimization in daily operations

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This study embeds multi-criteria optimized trajectories in today’s procedures of flight planning, preparing and operations. Therefore, European air traffic procedures are substantiated by a review of today’s regulative provisions and possibilities of intended deviations from filed flight plans initiated by both air traffic control and flight crew. As a reference for future flight planning, we modeled and described multi-criteria optimized trajectories. Thereupon, we developed an efficient and reliable algorithm for the adaption of waypoint-less optimized trajectories to the current navaid infrastructure. This method aims at increasing in airline efficiency in daily operations. For validation purposes, an actual flight plan has been calculated using the commercial flight-planning tool JetPlan.com by Jeppesen and is compared to our adapted trajectories. The comparison allows for the quantification of the benefits of our adapted flight paths against the restrictions of today’s flight planning. Here, we used a performance metric, considering distance flown, time of flight and fuel burn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

The data is taken from the NMOC databank, provided by Eurocontrol

Similar content being viewed by others

References

  1. Eurocontrol: European Route Network Improvement Plan—part 1 European Airspace Design Methodology Guidelines—general principles and technical specifications for airspace design (2008)

  2. Rosenow, J., Fricke, H., Schultz, M.: Air traffic simulation with multi-criteria optimized trajectories. In: Proceedings of the 2017 winter simulation conference, Las Vegas 2017

  3. Eurocontrol: ATM Master Plan. SESAR Joint Undertaking: European. Belgium (2015)

  4. Enea, G., Porretta, M., E. Corporation: A comparison of 4D-trajectory operations envisioned for NextGen and SESAR, some preliminary findings. In: ICAS international council of aeronautical sciences 2012

  5. Zeghal, K., Dowling, F.: Eurocontrol: 4D trajectory management pilot simulation (2008). https://www.eurocontrol.int/eec/public/standard_page/EEC_News_2008_2_TM.html. Accessed 23 Oct 2019

  6. Bucuroiu, R.: A free route airspace for europe. In: EUROCONTROL workshop on free route airspace marked by new south east common sky initiative 2017

  7. Rosenow, J., Strunck, D., Fricke, H.: Free route airspaces in functional air space blocks. In: SESAR Innovation Days 2018, Salzburg 2018

  8. Doc 4444, Procedures of Air Navigation Services—Air Traffic Management. 16 edn, International Civil Aviation Organization (2016)

  9. International Civil Aviation Organization: Convention on international civil aviation (Doc 7300/9), 9th edn. International Civil Aviation Organization, London (2006)

    Google Scholar 

  10. Internation Civil Aviation Organization: Convention on International Civil Aviation, annex 2 rules of the air. Internation Civil Aviation Organization, London (2006)

    Google Scholar 

  11. International Civil Aviation Organization: Guidance material for the use of repetitive flight plans (RPL) in the CAR/SAM regions. International Civil Aviation Organization, Lima (2001)

    Google Scholar 

  12. HungaroControl: AIP HUNGARY AIRAC AMDT 004/2017 ENR 1.10–1 flight planning. https://ais.hungarocontrol.hu/aip/2018-05-24/2018-05-24-AIRAC/pdf/LH_ENR_1_10_en.pdf (2017). Accessed 17 Jan 2018

  13. Jeppesen: Jeppesen JetPlanner, BA-I-JPLN-06_08, http://ww1.jeppesen.com/documents/aviation/pdfs/JetPlannerInser08_v3.pdf (2008). Accessed 17 Jan 2018

  14. Lufthansa Systems: Lido/Flight and Lido/FPLS. https://www.lhsystems.de/sites/default/files/product/2015/pb-lido-flight-and-lido-fpls_0.pdf (2015). Accessed 17 Jan 2018

  15. E. Commission: Commission Regulation (EU) No 677/2011 of July 2011 laying down detailed rules for the implementation of air traffic management (ATM) network functions and amending Regulation (EU) No 691/2010 (2011)

  16. Eurocontrol: ATFCM users manual, edition 22. Eurocontrol, Brussles (2018)

    Google Scholar 

  17. International Civil Aviation Organization: Performance based navigation manual. International Civil Aviation Organization, Lima (2008)

    Google Scholar 

  18. International Civil Aviation Organization: Manual on required navigation performance (RNP), Doc 9631-AN/937 (1999)

  19. Cir 331, Implementation of Strategic Lateral offset Procedures. International Civil Aviation Organization (2014)

  20. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematlk 1, 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  21. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4, 100–107 (1968)

    Article  Google Scholar 

  22. Ford, L.R.: Network flow theory, p. 923. The Rand Corporation, Santa Monica, Calif (1956)

    Google Scholar 

  23. Bellman, R.E.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958). https://doi.org/10.1090/qam/102435

    Article  MATH  Google Scholar 

  24. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)

    Article  Google Scholar 

  25. Warshall, S.: A theorem on Boolean matrices. J. ACM 9(1), 11–12 (1962)

    Article  MathSciNet  Google Scholar 

  26. Hargraves, C.R., Paris, S.: Direct trajectory optimization using nonlinear programming and collocation. J. Guidance Control Dyn 10, 338–342 (1987)

    Article  Google Scholar 

  27. Soler, M., Zou, B., Hansen, M.: Flight trajectory design in the presens of contrails: application of a multiphase mixed-integer optimal control approach. Transp. Res. Part C 48, 172–194 (2014)

    Article  Google Scholar 

  28. Sridhar, B., Ng, H., Chen, N.: Aircraft trajectory optimiatization and contrail avoidance in the presens of winds. J. Guidance Control Dyn. 34, 1577–1584 (2011)

    Article  Google Scholar 

  29. Patrón, R. S., Botez, R. M., Labour, D.: Flight trajectory optimization through genetic algorithms coupling vertical and lateral profiles. In: ASME 2014 International Mechanical Engineering Congress & Exhibition, Montreal (2014)

  30. Murietta, M., Botez, R. M.: Vertical navigation trajectory optimization algorithm for a commercial aircraft. Am. Inst. Aeronaut. Astro. (2014). https://doi.org/10.2514/6.2014-3019

    Article  Google Scholar 

  31. Ringerz, U.: Aircraft trajectory optimization as a wireless internet application. J. Aerosp. Comput. Inf. Commun. 1, 85–99 (2004)

    Article  Google Scholar 

  32. Rosenow, J., Förster, S., Lindner, M., Fricke, H.: Muti-objective Trajectory Optimization. International Transortation 68 (2016)

  33. Förster, S., Rosenow, J., Lindner, M., Fricke, H.: A Toolchain for Optimizing Trajectories Under Real Weather Conditions and Realistic Flight Performance. Greener Aviation Conference. Brusseles (2016)

  34. Rosenow, J., Fricke, H., Schultz, M.: Impact of optimized trajectories on air traffic flow management. Aeronaut. J. 123, 157–173 (2017)

    Article  Google Scholar 

  35. Rosenow, J., Förster, S., Lindner, M., Fricke, H.: Multi-criteria optimized trajectories impacting today’s air traffic density, efficiency and environmental compatibility. J. Air Transp. (2017). https://doi.org/10.2514/1.D0086

    Article  Google Scholar 

  36. Rosenow, J., Fricke, H.: Flight performance modeling to optimize trajectories. In: Deutscher Luft- und Raumfahrt Kogress, Braunschweig (2016)

  37. Rosenow, J., Fricke, H., Lindner, M.: Impact of climate costs on airline network and trajectory optimization: a parametric study. CEAS Aeronaut. J. 8 (2017)

  38. Lindner, M., Förster, S., Rosenow, J., Fricke, H.: Potential of integrated aircraft rotation and flight scheduling with modeled tailsign performance. In: Deutscher Kongress für Luft- und Raumfahrt, Braunschweig (2016)

  39. Rosenow, J., Fricke, H.: Impact of multi-criteria optimized trajectories on European airline efficiency, safety and airspace demand. J Trans Manag 78, 133–143 (2017)

    Google Scholar 

  40. National Atmospheric Oceanic Administration: NOAA. http://nomads.ncep.noaa.gov/. Accessed 17 Jan 2018

  41. International Civial Aviation Organization: Aeronautical information service manual. International Civil Aviation Organization, Lima (2003)

    Google Scholar 

  42. Rosenow, J., Strunck, D., Fricke, H.: Free route airspaces in functional air space blocks. In: 8th Sesar Innovation Days, Salzburg, 2018

  43. Thomson, D. B., Krakiwsky, E. J., Adams, J. R.: A manaul for geodetic position computations in the Maritime Provinces. Geodesy and Geomatics Engineering, Technical Report No 52 (1978)

  44. Airport Collaborative Decision-Making (A-CDM) Implementation Manual. 5th edn., EUROCONTROL (2017)

  45. Lau, J. B., Linke, F., Gollnick, V., Nachtigall, K.: Large-scale network slot allocation with dynamic time horizons. In: Eleventh USA/Europe Air Traffic Management Research and Development Seminar (ATM2015), Lisabon (2015)

Download references

Acknowledgements

This research is part of the research project ProfiFuel, including the project partners Jeppesen, TU Dresden and Gesellschaft für Luftverkehrsforschung GmbH and is financed by the Federal Ministry for Economic Affairs and Energy. Specifically, the authors would like to thank Alexander Lau (DLR, Institute for Air Transportation Systems) for the extraction of filed and flown historical routes (Fig. 8) and for valuable hints regarding today’s geopolitical difficulties in flight operations. Furthermore, the authors would like to thank Dr. Michael Schultz (DLR, Institute of flight Guidance, Air Transportation) for background knowledge regarding future flight planning and data exchange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Rosenow.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenow, J., Strunck, D. & Fricke, H. Trajectory optimization in daily operations. CEAS Aeronaut J 11, 333–343 (2020). https://doi.org/10.1007/s13272-019-00429-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-019-00429-7

Keywords

Navigation