Skip to main content
Log in

A numerical approach for assessing slotted wall interference using the CRM model at ETW

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

This paper is devoted to the assessment of wall interference in the slotted wall test section of the European Transonic Windtunnel (ETW) over a wide range of Reynolds numbers. The experimental part of the investigation was performed in February 2014 by testing the NASA Common Research Model mounted on a fin-sting support. These tests were carried out within the scope of the ESWIRP project funded by the European Commission in the 7th framework program. The numerical research was based on the Electronic WindTunnel (EWT-TsAGI) software with a cryogenic solver. The assessed Mach number influence on the wall signatures revealed a very similar effect to applying the classical Prandtl–Glauert rule over the investigated Mach number range. Practically, no Reynolds number effects on the wall pressure distributions generated by the model and its support system could be identified over the wide range of Re numbers investigated. The first attempt of the EWT-TsAGI code application for a simulation of ETW tests featuring the model in the slotted wall tunnel showed a fair coincidence of the pressure coefficient distribution on test section walls in the model region, on the wing-root sections and the drag polar at moderate lift coefficient values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

B :

Wing span

BTWT:

Boeing Transonic Wind Tunnel

c :

Mean aerodynamic chord

C D :

Drag coefficient

CDV = C D − C 2L /π/λ :

Profile drag coefficient

CEAS:

Council of European Aerospace Societies

CFD:

Computational fluid dynamics

C L :

Lift coefficient

Cp:

Pressure coefficient

CRM:

NASA Common Research Model

DLR:

German Aerospace Center

E :

Young’s modulus

ETW:

European Transonic Wind Tunnel

ESWIRP:

European strategic wind tunnels improved research potential—so-called targeted approach of the Integrating Activities of the FP7 Capacities Work Program

HTP:

Horizontal tail plane of the model

EWT-TsAGI:

Electronic Wind Tunnel, computer code

ICAS:

Institute of Thermomechanics of the Academy of Sciences of the Czech Republic

JAXA:

Japan Aerospace Exploration Agency

M :

Mach number

NASA:

National Aeronautics and Space Administration

NTF:

National Transonic Facility (NASA)

ONERA:

The French aeronautics, space and defense research lab

P, P t :

Total pressure

PETW:

Pilot European Transonic Windtunnel

q :

Dynamic pressure

R :

Coefficient in boundary condition

Re :

Reynolds number

S :

Wing reference area

SPT:

Stereo pattern tracking (ETW system for deformation measurements)

T tot, T t :

Total temperature

TR-PIV:

Time resolved particle image velocimetry

TsAGI:

Central Aerohydrodynamic Institute

u :

Perturbed longitudinal velocity component

UCAM:

University of Cambridge

VKI:

von Karman Institute for Fluid Dynamics, Belgium

VZLU:

Aerospace research and test establishment, Czech Republic

v :

Perturbed normal velocity component

x, y, z :

Coordinates (starting from test section inlet, centreline)

α :

Model angle of attack (°)

Λ :

Wing aspect ratio

η :

Dimensionless (y/b) span-wise pressure orifices location

References

  1. Hackett, J.E., Wilsden, D.J., Lilley, D.E.: Estimation of tunnel blockage from wall pressure signatures—a review and data correlation. NASA CR 152241 (1979)

  2. Ulbrich, N.: The real-time wall interference correction system of the NASA Ames 12-foot pressure wind tunnel. NASA CR 208537 (1998)

  3. Ulbrich, N., Boone, A.R.: Determination of the wall boundary condition of the NASA Ames 11ft Transonic Wind Tunnel. AIAA Paper 2001-1112

  4. Iyer, V., Kuhl, D.D., Walker, E.L.: Wall interference study of the NTF slotted tunnel using bodies of revolution wall signature data. AIAA Paper 2004-2306

  5. Walker, E.L.: Validation of blockage interference corrections in the National Transonic Facility. AIAA Paper 2007-0750

  6. Iyer, V., Kuhl, D.D., Walker, E.L.: Improvements to wall corrections at the NASA langley 14×22-Ft subsonic tunnel. AIAA Paper 2003-3950

  7. Iyer, V.: A wall correction program based on classical methods for the NTF (solid wall or slotted wall) and the 14×22-ft subsonic tunnel at NASA LaRC. NASA CR-2004-213261

  8. Ulbrich, N., Boone, A.R.: Direct validation of the wall interference correction system of the Ames 11-foot Transonic Wind Tunnel. NASA/TM-2003-212268 (2003)

  9. Rivers, M.B., Dittberner, A.: Experimental investigations of the NASA CRM in the NASA Langley NTF facility and NASA Ames 11-ft Transonic Wind Tunnel. AIAA Paper 2011-1126

  10. Rivers, M.B., Quest, J., Rudnik R.: Comparison of the NASA CRM ETW tunnel test data to NASA test data. AIAA Paper 2015-1093

  11. Ashill, P., Hackett, J.E., Mokry, M., Steinle, F.: Boundary measurements methods. AGARD AG-336, Paper 4 (1998)

  12. Quest, J.: Tunnel corrections in ETW. Technical memorandum ETW/TM/99024, March 1999; ETW

  13. Labrujere, Th.E.; Maarsingh, R.A.; Smith, J.: Evaluation of measured-boundary-condition methods for 3D subsonic wall interference. NLR Technical Report TR 88072 U, 1988

  14. Wubben, F., Takara, E.: Wind tunnel model support and wall interference corrections in DNW-HST—ensuring high data quality standards. CEAS 2015, Paper 102

  15. Krynytzky, A.J.: Parametric model size study of wall interference in the BTWT Using TRANAIR. AIAA Paper 2004-2310

  16. Maseland, J.E.J., Laban, M., van der Ven H., Kooi, J.W.: Development of CFD-based interference models for the DNW-HST Transonic Wind Tunnel. AIAA Paper 2006-3639

  17. Krynytzky, A.J., Johnsen, K.M., Sommerfield, D.M.: Uncertainty evaluation of wall interference in a large Transonic Wind Tunnel. AIAA Paper 2010-4341

  18. Krynytzky, A.J., Fleming, M., Sommerfield, D.M., Li, P.: Computational modeling of a slotted wall test section. AIAA Paper 2012-2863

  19. Glazkov, S.A., Gorbushin, A.R., Ivanov, A.I., Semenov, A.V., Vlasenko, V.V., Quest, J.: Numerical and experimental investigations of slot flow with respect to wind tunnel wall interference assessment. In: AIAA Paper 2004-2308, 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, Portland, Oregon, 28 June (2004)

  20. Lutz, Th., Gansel, P.P., Godard, J.L., Gorbushin, A.R., Konrath, R., Quest, J., Rivers, S.M.: Going for experimental and numerical unsteady wake analyses combined with wall interference assessment by using the NASA CRM model in ETW. In: AIAA Paper 2013-0871, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Texas, Grapevine, 07–10 January (2013)

  21. Vassberg, J.C., DeHaan, M.A., Rivers, S.M., Wahls, R.A.: Development of a common research model for applied CFD validation studies. In: AIAA Paper 2008-6919 (2008)

  22. Vassberg, J.C., Tinoco, E.N., Mani, M., Rider, B., Zickuhr, T., Levy, D.W., Broderson, O.P., Eisfeld, B., Crippa, S., Wahls, R.A., Morrison, J.H., Mavriplis, D.J., Murayama, M.: Summary of the fourth AIAA CFD drag prediction workshop. In: AIAA Paper 2010-4547, 8th AIAA Applied Aerodynamics Conference, Chicago, IL, 28 Jun–1 Jul (2010)

  23. Neyland, VYa., Bosnyakov, S.M., Glazkov, S.A., Ivanov, A.I., Matyash, S.V., Mikhailov, S.V., Vlasenko, V.V.: Conception of Electronic Wind Tunnel and first results of its implementation. Prog. Aerosp. Sci. 37(2), 121–145 (2001)

    Article  Google Scholar 

  24. Bosnyakov, S., Kursakov, I., Lysenkov, A., Matyash, S., Mikhailov, S., Vlasenko, V., Quest, J.: Computational tools for supporting the testing of civil aircraft configurations in wind tunnels. Prog. Aerosp. Sci. 44(2), 67–120 (2008)

    Article  Google Scholar 

  25. Kazhan, E.V.: Stability improvement of Godunov–Kolgan–Rodionov TVD scheme by a local implicit smoother. TsAGI Sci. J. 43(6), 787–812 (2012). (ISSN 1948-2590)

    Article  Google Scholar 

  26. Jacobsen, R.T.: The thermodynamic properties of nitrogen from 65 to 2000 K with pressure to 1000 atm. Ph.D. Thesis. Washington State University. NASA CR-128526 (1972)

  27. Roache, P.J.: Verification and Validation in Computational Science and Engineering. Hermosa Publishers, Albuquerque (1998)

    Google Scholar 

  28. Ivanov, MYa., Krupa, V.G., Nigmatullin, R.Z.: Implicit scheme of S. K. Godunov of increased accuracy for numerical integration of Euler equations. Zhur. vych. I Mat. i Mat. Fiz. 29(6), 888–901 (1989)

    Google Scholar 

  29. Bosnyakov, S.M., Chevagin, A.F., Vlasenko, V.V.: TsAGI’s experience in numerical simulation of flow in cryogenic wind tunnel. AIP Conf. Proc. 1770, 020007 (2016). doi:10.1063/1.4963930

    Article  Google Scholar 

  30. Pindzola, M., Lo, C.F.: Boundary interference at subsonic speeds in wind tunnels with ventilated walls. AEDC TR-69-47 (1969)

  31. Velichko, S.A., Lifshits, YuB, Neyland, V.M., Solntsev, I.A.: Correction of the influence of Transonic Wind Tunnel walls. Comput. Math. Math. Phys. 36(12), 80–90 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Glazkov, S.A., Gorbushin, A.R., Ivanov, A.I., Semenov, A.V.: Recent experience in improving the accuracy of wall interference corrections in TsAGI T-128 wind tunnel. Prog. Aerosp. Sci. 37(3), 263–298 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Gorbushin.

Additional information

This paper is based on a presentation at the CEAS Air & Space Conference 2015, September 7–11, Delft, The Netherlands

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kursakov, I.A., Gorbushin, A.R., Bosnyakov, S.M. et al. A numerical approach for assessing slotted wall interference using the CRM model at ETW. CEAS Aeronaut J 9, 319–338 (2018). https://doi.org/10.1007/s13272-017-0248-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-017-0248-1

Keywords

Navigation