Skip to main content
Log in

The HART II international workshop: an assessment of the state of the art in CFD/CSD prediction

  • Review Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Over the past decade, there have been significant advancements in the accuracy of rotor aeroelastic simulations with the application of computational fluid dynamics methods coupled with computational structural dynamics codes (CFD/CSD). The HART II international workshop database, which includes descent operating conditions with strong blade–vortex interactions (BVI), provides a unique opportunity to assess the ability of CFD/CSD to capture these physics. In addition to a baseline case with BVI, two additional cases with 3/rev higher harmonic blade root pitch control are available for comparison. The collaboration during the workshop permits assessment of structured, unstructured, and hybrid overset CFD/CSD methods from across the globe on the dynamics, aerodynamics, and wake structure. Evaluation of the plethora of CFD/CSD methods indicates that the most important numerical variables associated with most accurately capturing BVI include the use of either a two-equation RANS model or detached eddy simulation-based turbulence model and a sufficiently small time step. An appropriate trade-off between grid fidelity and spatial accuracy schemes also appears to be important for capturing BVI on the advancing side of the rotor disk. Overall, the CFD/CSD methods generally fall within the same accuracy; cost-effective hybrid Navier-Stokes/Lagrangian wake methods tend to correlate less accurately with experiment and have larger data scatter than the full CFD/CSD methods for most parameters evaluated. The importance of modeling the fuselage is observed, and other requirements are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

Notes

  1. The MN and MV naming convention was adopted from the 1994 HART I. However, the HHC control angles from the HART I are larger than the HHC control angles in the HART II.

  2. The experimental data include 2,048 samples/rev for the aerodynamic loads and 256 samples/rev for the structural moments.

Abbreviations

\(a_\infty\) :

Speed of sound (m/s)

c :

Airfoil chord (m)

C m M 2 :

Section moment coefficient, \(C_mM^2 = ({\rm d}M_{c/4}/{\rm d}y)/(\rho_\infty a_{\infty}^2 c^2/2)\)

C n M 2 :

Section force coefficient, \(C_nM^2 = ({\rm d}L^\prime/{\rm d}y)/(\rho_\infty a_{\infty}^2 c/2)\)

C T :

Thrust coefficient, \(C_T= T/(\rho_\infty \pi \Upomega^2 R^4)\)

fg :

Function

\({\rm d}L^\prime/dy\) :

Section lift (N/m)

dM c/4/dy :

Section moment (Nm/m)

M h :

Hover tip Mach number, \(M_{\rm h} = \Upomega R/a_{\infty}\)

M x :

Rotor hub roll moment (Nm)

M y :

Rotor hub pitch moment (Nm)

\(M_\infty\) :

Free-stream Mach number, \(M_\infty=V_\infty/a_\infty\)

n :

Integer

N b :

Number of blades

\(p_\infty\) :

Static air pressure (kPa)

P :

Rotor power (kW)

r :

Pearson product moment coefficient

r a :

Non-dimensional root cut-out radius

r tw :

Non-dimensional zero twist radius

R :

Rotor radius (m)

s :

Standard deviation

t :

Time (s)

T :

Thrust (N)

\(T_\infty\) :

Air temperature (°C)

\(V_\infty\) :

Air speed, m/s

xyz :

Chord, radial, normal coordinates, respectively (m)

x el :

Elastic deflection (m)

x hub :

Hub center distance to nozzle (m)

y hub :

Hub position above centerline (m)

α :

Angle of attack (°)

α S :

Rotor shaft angle of attack (°)

\(\Updelta{\alpha_s}\) :

Wind tunnel interference angle (°)

ϕ :

Mode shape

\(\Uptheta_C\) :

Lateral cyclic pitch angle (°)

\(\Uptheta_S\) :

Longitudinal cyclic pitch angle (°)

\(\Uptheta_{\rm el}\) :

Elastic twist angle (°)

\(\Uptheta_{\rm tw}\) :

Linear blade twist (°/R)

\(\Uptheta_{75}\) :

Collective pitch angle at 0.75R (°)

\(\Uptheta_{3}\) :

HHC pitch angle at 3/rev (°)

μ :

Advance ratio, \(\mu=V_\infty {\rm cos} (\alpha_S)/(\Upomega R)\)

\(\rho_\infty\) :

Air density (kg/m3)

σ :

Rotor solidity, σ = N b c/(πR 2)

ψ :

Azimuth, \(\psi = \Upomega t,\) (°)

ψ 3 :

Phase of 3/rev HHC pitch angle (°)

\(\Upomega\) :

Rotor rotational frequency (radians/s)

\(\bar{.}\) :

Mean

References

  1. van der Wall, B.G.: A comprehensive rotary–wing database for code validation: The HART II International Workshop. Aeronaut. J. R. Aeronaut. Soc. 115(1163), 91–102 (2011); erratum in 115(1166) April 2011, p. 220.

  2. van der Wall, B.G., Lim, J., Smith, M.J., Jung, S.N., Bailly, J., Baeder, J.D., Boyd, D.D., Jr.: An assessment of comprehensive code prediction state-of-the-art using the HART II International Workshop Data. In: Proceedings of the 68th American Helicopter Society Forum, Ft. Worth, TX, May 1–3, 2012

  3. van der Wall, B.G., Lim, J., Smith, M.J., Jung, S. N., Bailly, J., Baeder, J.D., Boyd, D.D., Jr.: The HART II International Workshop: an assessment of the state-of-the-art in comprehensive code prediction. CEAS Aeronaut. J.  (2013). doi:10.1007/s13272-013-0077-9

  4. van der Wall, B.G., Burley, C.L., Yu, Y.H., Pengel, K., Beaumier, P.: The HART II test—measurement of helicopter rotor wakes. Aerosp. Sci. Technol. 8(4), 273–284 (2004)

    Article  Google Scholar 

  5. van der Wall, B.G.: 2nd HHC aeroacoustic rotor test (HART II)—Part I: test documentation, DLR-IB 111-2003/31. German Aerospace Center (DLR) (2003)

  6. van der Wall, B.G., Burley, C.L.: 2nd HHC aeroacoustic rotor test (HART II)—Part II: representative results, DLR-IB 111-2005/03. German Aerospace Center (DLR) (2005)

  7. Schneider, O.: Analysis of SPR measurements of HART II. Aerosp. Sci. Technol. 9(5), 409–420 (2005)

    Article  MATH  Google Scholar 

  8. Lim, J.W., Tung, C., Yu, Y.H., Burley, C.L., Brooks, T.F., Boyd, D., van der Wall, B.G., Schneider, O., Richard, H., Raffel, M., Beaumier, P., Delrieux, Y., Pengel, K., Mercker, E.: HART II: prediction of blade–vortex interaction loading. In: Proceedings of the 29th European Rotorcraft Forum, Friedrichshafen, Germany (2003)

  9. Lim, J.W, Nygaard, T.A, Strawn, R., Potsdam, M.: Blade–vortex interaction airloads prediction using coupled computational fluid and structural dynamics. J. Am. Helicopter Soc. 52(4), 318–328 (2007)

    Google Scholar 

  10. Lim, J., Strawn, R.: Computational modeling of HART II blade–vortex interaction loading and wake system. J. Aircraft 45(3), 923–933 (2008)

    Article  Google Scholar 

  11. Chan, W., Meakin, R., Potsdam, M.: CHSSI software for geometrically complex unsteady aerodynamic applications. In: AIAA Paper 2001-0593, 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, June 11–14 (2001)

  12. Sitaraman, J., Baeder, J., Chopra, I.: Validation of UH-60 rotor blade aerodynamic characteristics using CFD. In: Proceedings of the 59th Annual Forum of the American Helicopter Society International, Phoenix, AZ, May 6–8 (2003)

  13. Yoon, S., Jameson, A.: Lower–upper symmetric-Gauss–Seidel method for Euler and Navier-Stokes equations. AIAA J. 26(9):1025–1026 (1988)

    Google Scholar 

  14. Min, B.Y.: A physics based investigation of Gurney flaps for enhancement of rotorcraft flight characteristics. PhD dissertation, School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA (2010)

  15. Min, B.Y., Sankar, L.N.: Hybrid Navier-Stokes/free wake method for modeling blade vortex interactions. J. Aircraft 47(3), 975–982 (2010)

    Article  Google Scholar 

  16. Kim, J.W., Park, S.H., Yu, Y.H.: Euler and Navier-Stokes simulations of helicopter rotor blade in forward flight using an overlapped grid solver. In: AIAA-2009-4268, 19th AIAA CFD Conference, San Antonio, TX (2009)

  17. Cho, K.W., Kwon, J.H., Lee, S.: Development of a fully systemized chimera methodology for steady/unsteady problems. J. Aircraft 36(6), 973–980 (1999)

    Article  Google Scholar 

  18. Anderson, W.K., Bonhaus, D.L.: An implicit upwind algorithm for computing turbulent flows on unstructured grids. Comput. Fluids 23(1), 1–22 (1994)

    Article  MATH  Google Scholar 

  19. Biedron, R.T., Thomas, J.L.: Recent enhancements to the FUN3D flow solver for moving mesh applications. In: AIAA-2009-1360, 47th AIAA Aerospace Sciences Meeting, Orlando, FL (2009)

  20. Abras, J., Lynch, C.E., Smith, M.: Rotorcraft methodology for unstructured CFD–CSD coupling. J. Am. Helicopter Soc. 57(1), 1–14 (2012). doi:10.4050/JAHS.57.01200.

    Google Scholar 

  21. Sankaran, V., Wissink, A., Datta, A., Sitaraman, J., Jayaraman, B., Potsdam, M., Kamkar, S., Katz, A., Mavriplis, D., Saberi, H., Roget, B., Strawn, R.: Overview of the Helios V2.0 computational platform for rotorcraft simulations. In: AIAA-2011-1105, 49th Aerospace Sciences Meeting and Exhibit, Orlando, FL, January 4–7 (2011)

  22. Wissink, W., Sankaran, V., Datta, A., Jayaraman, B., Potsdam, M., Kamkar, S., Sitaraman, J., Mavriplis, D., Strawn, R.: Capability enhancements version 3 of the Helios high-fidelity rotorcraft simulation code. In: AIAA-2012-0713, 50th Aerospace Sciences Meeting and Exhibit, Nashville, TN, January 9–12 (2012)

  23. Gopalan, G., Sitaraman, J., Baeder, J.D., Schmitz, F.H.: Aerodynamic and aeroacoustic prediction methodologies with application to the HART II model rotor. In: Proceedings of the 62nd Forum of the American Helicopter Society, Phoenix, AZ, May 9–11 (2006)

  24. Potsdam, M., Yeo, H., Johnson, W.: Rotor airloads prediction using loose aerodynamic/structural coupling. AIAA J. Aircraft 43(3), 732–742 (2006)

    Article  Google Scholar 

  25. Reveles, N., Smith, M.J., Zaki, A., Bauchau, O.A.: A kriging-based trim algorithm for rotor aeroelasticity. In: Proceedings of the 37th European Rotorcraft Forum, Gallarata, Italy, September 12–15 (2011)

  26. Johnson, W.: Rotorcraft aerodynamics models for a comprehensive analysis. In: Proceedings of the American Helicopter Society 54th Annual Forum, Washington, DC, May 20–22 (1998)

  27. Bauchau, O.A., Bottasso, C.L., Nikishkov, Y.G.: Modeling rotorcraft dynamics with finite element multibody procedures. Math. Comput. Model. 33(10–11), 1113–1137 (2001)

    Google Scholar 

  28. Saberi, H., Khoshlahjeh, M., Ormiston, R., Rutkowski, M.J.: Overview of RCAS and application to advanced rotorcraft problems. In: Proceedings of the 4th AHS Decennial Specialist’s Conference on Aeromechanics, San Francisco, CA, January 21–23 (2004)

  29. Chopra, I., Bir, G.: University of Maryland Advanced Rotor Code: UMARC. In: American Helicopter Society Aeromechanics Specialists Conference, San Francisco, CA, January 19–21 (1994)

  30. van der Wall, B.G.: Analytic formulation of unsteady profile aerodynamics and its application to simulation of rotors, ESA-TT-1244. German Aerospace Center (1992) (Translation of the Research Report DLR-FB 90-28, 1990)

  31. von Grünhagen, W.: Bestimmung der gekoppelten Schlagbiege-, Schwenkbiege- und Torsionsschwingungen für beliebige Rotorblätter mit Hilfe der Finite-Element-Methode (Computation of the coupled flap bending, lag bending and torsion oscillations for arbitrary rotor blades with the aid of the finite element method), DFVLR IB 154-80/21. German Aerospace Center (1980)

  32. Houbold, J.C., Brooks, G.W.: Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades, NACA TN 3905 (1957)

  33. Peters, D.A., Barwey, D.: A general theory of rotorcraft trim. Math. Probl. Eng. 2(1), 1–34 (1996)

    Article  MATH  Google Scholar 

  34. Furchert, R.: Bestimmung der eigenfrequenzen und eigenformenvon 3 rotorblattsätzen des rotorversuchs-stands, (Determination of natural frequencies and modes of 3 rotor blade sets of the rotor test rig), IB 111-92/11. German Aerospace Center (1992)

  35. Bousman, W.G.: Putting the aero back in aeroelasticity, NASA/TM-2000-209589, USAAMCOM-TR-00-A-005 (2000)

  36. Bousman, W.G., Norman, T.: Assessment of predictive capability of aeromechanics. J. Am. Helicopter Soc. 55(1), 012001/1-12 (2010)

    Google Scholar 

  37. Heyson, H.H.: Use of superposition in digital computers to obtain wind tunnel interference factors for arbitrary configurations, with particular reference to V/STOL models, NASA TR R–302 (1969)

  38. Langer, H.-J.: An experimental evaluation of wind tunnel wall correction methods for helicopter performance. In: Proceedings of the 52nd Annual Forum of the American Helicopter Society, Washington, DC, June 4–6 (1996)

  39. Boyd, D.D., Jr.: HART II acoustic predictions using a coupled CFD/CSD method. In: Proceedings of the American Helicopter Society 65th Annual Forum, Grapevine, TX, May 27–29 (2009)

  40. Moulton, M., Smith, M.J.: The prediction and validation of static and dynamic stall. In: Proceedings of the AHS International Meeting on Advanced Rotorcraft Technology and Safety Operations, Ohmiya, Japan, November 1–3 (2010)

  41. Biedron, R., Lee-Rausch, E.: An examination of unsteady airloads on a UH-60A rotor: computation vs. measurement. In: Proceedings of the 68th American Helicopter Society Forum, Ft. Worth, TX, May 1–3 (2012)

  42. Lim, J.W., Dimanlig, A.C.B.: The effect of fuselage and rotor hub on blade–vortex interaction airloads and rotor wakes. In: Proceedings of the 36th European Rotorcraft Forum, Paris, France, September 7–9 (2010)

  43. van der Wall, B.G.: Mode identification and data synthesis of HART II blade deflection data, DLR-IB 111-2007/28. German Aerospace Center (2007)

  44. Lim, J.W., van der Wall, B.G.: An assessment of 3-C PIV analysis methodology for HART II measured data, NASA TM-2010-216024, AFDD TR RDMR-AF-10-03 (2010)

  45. van der Wall, B.G., Richard, H.: Analysis methodology for 3C PIV data of rotary wing vortices. Exp. Fluids 40(5), 798–812 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of HART II partners: DLR, DNW, NASA, ONERA, and AFDD. In addition, the authors would like to thank all of their colleagues, students, or advisors for their collaboration. These are: Andy Wissink, Anubhav Datta, Mark Potsdam, Venke Sankaran, Jay Sitaraman, and Roger Strawn of the Helios development team (AFDD-2), Michael Acierno, Nicolas Reveles, Eric Lynch, and Olivier Bauchau (GIT-1), Lakshmi N. Sankar, Kyle Collins and Olivier Bauchau (GIT-2), Young-Hyun You and Jeong-Hwan Sa (KU), Elizabeth M. Lee-Rausch (NL-2), and Mathieu Amiraux and Sebastian Thomas (UMD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn J. Smith.

Additional information

Condensed form of a paper first presented at the 68th Annual Forum of the American Helicopter Society, Ft. Worth, TX, USA, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.J., Lim, J.W., van der Wall, B.G. et al. The HART II international workshop: an assessment of the state of the art in CFD/CSD prediction. CEAS Aeronaut J 4, 345–372 (2013). https://doi.org/10.1007/s13272-013-0078-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-013-0078-8

Keywords

Navigation