Skip to main content
Log in

Numerical investigation of air jets for dynamic stall control on the OA209 airfoil

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

The design and numerical investigation of constant blowing air jets as fluidic control devices for helicopter dynamic stall control is described. Prospective control devices were first investigated using 3D RANS computations to identify effective configurations and reject ineffective configurations. Following this, URANS investigations on the dynamically pitching OA209 airfoil verified that configurations had been selected which reduced the peaks in pitching moment and drag while preserving at least the mean lift and drag from the clean wing. Two configurations using jets at 10% chord on the airfoil top were identified, and one configuration using a tangential slot at 10% chord on the airfoil top, with each configuration evaluated for two jet total pressures. For the best configuration, a reduction in the pitching moment peak of 85% and in the drag peak of 78% were observed, together with a 42% reduction in the mean drag over the unsteady pitching cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bechert, D.W., Stanewsky, E., Hage, W.: Windkanalmessungen an einem Transsonik-Flügel mit Strömungsbeeinflussenden Massnahmen. DLR-IB 223-99C05 (1998)

  2. Chandrasekhara, M.S., Wilder, M.C., Carr, L.W.: Competing mechanisms of compressible dynamic stall. AIAA J. 36(3), 387–393 (1998)

    Article  Google Scholar 

  3. Dietz, G.,, Mai, H., Geissler, W.: Auftriebsfläche mit verbessertem Ablöseverhalten bei stark veränderlichem Anstellwinkel. European Patent EP 1 714 869 A1. 25 October 2006

  4. Edwards, J.R., Chandra, S.: Comparison of Eddy viscosity-transport turbulence models for three-dimensional, shock-separated flowfields. AIAA J. 34(4), 756–763 (1996)

    Google Scholar 

  5. Gallot, J., Vingut, G., De Paul, M.V., Thibert, J.: Blade profile for rotary wing of an aircraft. United States Patent 4325675. 20 April 1982

  6. Gardner, A.D., Richter, K., Rosemann, H.: Prediction of the wind tunnel sidewall effect for the iGREEN wing-tailplane interference experiment. STAB2008, Aachen (2008)

  7. Gardner, A.D.: Numerical investigation of air jets for dynamic stall control on the OA209 airfoil. DLR-IB 224-2009 A32 (2009)

  8. Geissler, W., Dietz, G., Mai, H., Bosbach, J., Richard, H.: Dynamic stall and its passive control investigations on the OA209 airfoil section. In: 31th European Rotorcraft Forum, Florence, Italy (2005)

  9. Geissler, W., Haselmeyer, H.: Investigation of dynamic stall on-set. In: Aerospace Science and Technology. Elsevier Masson SAS, pp. 590–600 (2006)

  10. Gerhold, T., Friedrich, O., Evans, J., Galle, M.: Calculation of complex three-dimensional configurations employing the DLR-TAU-code. AIAA-paper 97-0167 (1997)

  11. Heine, B., Mulleners, K., Gardner, A., Mai, H.: On the effects of leading edge vortex generators on an OA209 airfoil. ODAS2009 (2009)

  12. Mai, H., Dietz, G., Geissler, W., Richter, K., Bosbach, J., Richard, H., de Groot, K.: Dynamic stall control by leading edge vortex generators. J. Am. Helicopter Soc. 53(1), 26–36 (2008)

    Article  Google Scholar 

  13. Mavriplis, D.J., Jameson, A., Martinelli, L.: Multigrid solution of the Navier-Stokes equations on triangular meshes. ICASE-report no. 89-35 (1989)

  14. McCroskey, M.C., McAlister, K.W., Carr, L.W., Pucci, S.L.: An Experimental Study of Dynamic Stall on Advanced Airfoil Sections, vol. 1. Summary of the Experiment. NACA-TM 84245 (1982)

  15. Meyer, R.K.J.: Experimentelle Untersuchungen von Rückstromklappen auf Tragflügeln zur Beeinflussung von Strömungsablösungen. Dissertation, Technische Üniversität Berlin, FB10 (2000)

  16. Mulleners, K., Henning, A., Mai, A., Raffel, M., Le Pape, A., Costes, M.: Investigation of the unsteady flow development over a pitching airfoil by means of TR-PIV. AIAA 2009–3504 (2009)

  17. Neuhaus, D.: Magnetisch betätigbares Ventil. Deutsches Patent DE 10 2005 035 878. 31 August 2006

  18. Prince, S.A., Khodagolian, V., Singh, C.: Aerodynamic stall suppression on airfoil sections using passive air-jet vortex generators. AIAA J. 47(9), 2232–2242 (2009)

    Article  Google Scholar 

  19. Richter, K., Le Pape, A., Knopp, T., Costes, M., Gleize, V., Gardner, A.D.: Improved two-dimensional dynamic stall prediction with structured and hybrid numerical methods. In: 65th AHS Forum, Grapevine, Texas (2009)

  20. Schwamborn, D., Gardner, A., von Geyr, H., Krumbein, A., Lüdeke, H., Stürmer, A.: Development of the TAU-Code for aerospace applications. In: 50th NAL ICAST, Bangalore, India (2008)

  21. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. AIAA Paper 92-0439 (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Gardner.

Additional information

The article was presented at the European Rotorcraft Forum 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gardner, A.D., Richter, K. & Rosemann, H. Numerical investigation of air jets for dynamic stall control on the OA209 airfoil. CEAS Aeronaut J 1, 69–82 (2011). https://doi.org/10.1007/s13272-011-0002-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-011-0002-z

Keywords

Navigation