Skip to main content
Log in

Transcriptomic analyses reveal novel genes with sexually dimorphic expression in Takifugu rubripes brain during gonadal sex differentiation

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Quantification of mRNAs in gonads and other tissues at the early critical development stage of sex differentiation may help to provide a global view of regulatory mechanisms underlying sex differentiation. We have recently reported the transcriptomic profiling of fugu gonad associated with sex differentiation.

Objectives

This study attempted to identify the genes in the brain that are involved in gonadal differentiation and development.

Methods

In this study, a transcriptomic scan of potential candidate genes involved in sex differentiation was conducted in the brains of fugu larvae at 30 and 40 dah (morphological gonadal sex differentiation had not yet occurred). The dimorphic expression patterns of several candidate genes were verified using quantitative PCR.

Results

A total of 28.24 Gb of clean reads were obtained and 22,337 genes were identified in the brains of fugu larvae. These included 1008 novel genes that provide abundant data for functional analysis of sex differentiation. 229 genes were identified in the 30 dah larvae that were abundant in the XY brain and 21 that were abundant in the XX brain. In the 40 dah larvae, 325 genes were identified abundant in the XY brain and 174 were identified abundant in the XX brain.

Conclusion

This is the first investigation into the transcriptome of the fugu larvae brain at the early sex differentiation stage. The results obtained here will enhance the understanding of molecular mechanisms that underly fugu sex differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agate RJ, Grisham W, Wade J et al (2003) Neural, not gonadal, origin of brain sex differences in a gynandromorphic finch. Proc Natl Acad Sci USA 100:4873–4878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agate RJ, Choe M, Arnold AP (2004) Sex differences in structure and expression of the sex chromosome genes CHD1Z and CHD1W in zebra finches. Mol Biol Evol 21:384–396

    Article  CAS  PubMed  Google Scholar 

  • Aparicio S, Chapman J, Stupka E et al (2002) Whole genome shotgun assembly and analysis of the genome of Fugu rubripes. Science 297:1301–1310

    Article  CAS  PubMed  Google Scholar 

  • Arukwe A (2005) Modulation of brain steroidogenesis by affecting transcriptional changes of steroidogenic acute regulatory (StAR) protein and cholesterol side chain cleavage (P450scc) in juvenile Atlantic salmon (Salmo salar) is a novel aspect of nonylphenol toxicity. Environ Sci Technol 39:9791–9798

    Article  CAS  PubMed  Google Scholar 

  • Arukwe A, Förlin L, Goksøyr A (1997) Xenobiotic and steroid biotransformation enzymes in Atlantic salmon (salmo salar) liver treated with an estrogenic compound, 4-nonylphenol. Environ Toxicol Chem 16:2576–2583

    Article  CAS  Google Scholar 

  • Barannikova IA, Dyubin VP, Bayunova LV, Semenkova TB (2002) Steroids in the control of reproductive function in fish. Neurosci Behav Physiol 32:141–148

    Article  CAS  PubMed  Google Scholar 

  • Baulieu EE, Robel P, Schumacher M (2001) Neurosteroids: beginning of the story. Int Rev Neurobiol 46:1–32

    Article  CAS  PubMed  Google Scholar 

  • Benoit J (1935) Le role des yeux dans l’action stimulante de la lumiere sure le developpement testiulaire chez le canard. CR Soc Biol (Paris) 118:669–671

    Google Scholar 

  • Blanton ML, Specker JL (2007) The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit Rev Toxicol 37:97–115

    Article  CAS  PubMed  Google Scholar 

  • Busch S, Acar A, Magnusson Y, Gregersson P, Rydén L, Landberg G (2015) TGF-beta receptor type-2 expression in cancer-associated fibroblasts regulates breast cancer cell growth and survival and is a prognostic marker in pre-menopausal breast cancer. Oncogene 34:27–38

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Agate RJ, Itoh Y, Arnold AP (2005) Sexually dimorphic expression of trkB, a Z-linked gene, in early posthatch zebra finch brain. Proc Natl Acad Sci USA 102:7730–7735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Cooke BM (2006) Steroid-dependent plasticity in the medial amygdala. Neuroscience 138:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Davies W, Wilkinson LS (2006) It is not all hormones: alternative explanations for sexual differentiation of the brain. Brain Res 1126:36–45

    Article  CAS  PubMed  Google Scholar 

  • Dean DM, Sanders MM (1996) Ten years after: reclassification of steroid-responsive genes. Mol Endocrinol 10:1489–1495

    CAS  PubMed  Google Scholar 

  • Dennis C (2004) Brain development: the most important sexual organ. Nature 427:390–392

    Article  CAS  PubMed  Google Scholar 

  • Devlin RH, Nagahama Y (2002) Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 208:191–364

    Article  CAS  Google Scholar 

  • Dewing P, Shi T, Horvath S, Vilain E (2003) Sexually dimorphic gene expression in mouse brain precedes gonadal differentiation. Mol Brain Res 118:82–90

    Article  CAS  PubMed  Google Scholar 

  • Dewing P, Chiang CW, Sinchak K et al (2006) Direct regulation of adult brain function by the male specific factor SRY. Curr Biol 16:415–420

    Article  CAS  PubMed  Google Scholar 

  • DOF (Department of Fisheries) (2014) China fisheries statistic yearbook. China Agricul-ture Press, Beijing

    Google Scholar 

  • Forger NG (2001) Development of sex differences in the nervous system. In: Blass E (ed) Handbook of behavioral neurobiology, vol 13. Kluwer Academic (Plenum Publishers), New York, pp 143–198

    Google Scholar 

  • Forger NG (2006) Cell death and sexual differentiation of the nervous system. Neuroscience 138:929–938

    Article  CAS  PubMed  Google Scholar 

  • Francis RC (1992) Sexual lability in teleosts: developmental factors. Quart Rev Biol 67:1–18

    Article  Google Scholar 

  • Francis RC, Barlow GW (1993) Social control of primary sex differentiation in the Midas cichlid. Proc Natl Acad Sci USA 90:10673–10675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiyama T, Miyashita S, Tsuneoka Y, Kanemaru K, Kakizaki M, Kanno S (2018) Forebrain Ptf1a is required for sexual differentiation of the brain. Cell Res 24:79–94

    CAS  Google Scholar 

  • Gahr M (2003) Male Japanese quails with female brains do not show male sexual behaviors. Proc Natl Acad Sci USA 100:7959–7964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148:333–346

    Article  CAS  PubMed  Google Scholar 

  • Gorski RA, Harlan RE, Jacobson CD, Shryne JE, Southam AM (1980) Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J Comp Neurol 193:529–539

    Article  CAS  PubMed  Google Scholar 

  • Guiguen Y, Fostier A, Piferrer F, Chang CF (2010) Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish. Gen Comp Endocrinol 165:352–366

    Article  CAS  PubMed  Google Scholar 

  • Hasselberg L, Grøsvik BE, Goksøyr A, Celander MC (2005) Interactions between xenoestrogens and ketoconazole on hepatic CYP1A and CYP3A, in juvenile Atlantic cod (Gadus morhua). Comp Hepatol 4:2–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T (2012) A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 109:2955–2959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homma K, Ohta M, Sakakibara Y (1979) Photoinducible phase of the Japanese quail detected by direct stimulation of the brain. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism. Elsevier, Amsterdam, pp 85–94

    Google Scholar 

  • Huang GH, Sun ZL, Li HJ et al (2017) Rho GTPase-activating proteins: regulators of Rho GTPase activity in neuronal development and CNS diseases. Mol Cell Neurosci 80:18–31

    Article  CAS  PubMed  Google Scholar 

  • Jiang DN, Yang HH, Li MH, Shi HJ, Zhang XB, Wang DS (2016) Gsdf is a downstream gene of dmrt1 that functions in the male sex determination pathway of the Nile tilapia. Mol Reprod Dev 83:497–508

    Article  CAS  PubMed  Google Scholar 

  • Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N (2012) A transspecies missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 8:e1002798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikuchi K, Kai W, Hosokawa A, Mizuno N, Suetake H, Asahina K (2007) The sex-determining locus in the tiger pufferfish, Takifugu rubripes. Genetics 175:2039–2042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • King SR, Manna PR, Ishii T, Syapin PJ, Ginsberg SD, Wilson K (2002) An essential component in steroid synthesis, the steroidogenic acute regulatory protein, is expressed in discrete regions of the brain. J Neurosci 22:10613–10620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KH, Yamaguchi A, Rashid H, Kadomura K, Yasumoto S, Matsuyama M (2009a) Estradiol-17beta treatment induces intersexual gonadal development in the pufferfish, Takifugu rubripes. Zool Sci 26:639–645

    Article  CAS  Google Scholar 

  • Lee KH, Yamaguchi A, Rashid H, Kadomura K, Yasumoto S, Matsuyama M (2009b) Germ cell degeneration in high temperature treated pufferfish, Takifugu rubripes. Sex Dev 3:225–232

    Article  CAS  PubMed  Google Scholar 

  • Li M, Sun Y, Zhao J et al (2015) A tandem duplicate of anti-mullerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet 11:e1005678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu J, Zheng M, Zheng J et al (2005) Transcriptomic analyses reveal novel genes with sexually dimorphic expression in yellow catfish (Pelteobagrus fulvidraco). Brain Mar Biotechnol 17:613–623

    Article  CAS  Google Scholar 

  • Maehiro S, Takeuchi A, Yamashita J et al (2014) Sexually dimorphic expression of the sex chromosome linked genes cntfa and pdlim3a in the medaka brain. Biochem Biophys Res Commun 445:113–119

    Article  CAS  PubMed  Google Scholar 

  • Mank JE, Hultin-Rosenberg L, Webster MT, Ellegren H (2008) The unique genomic properties of sex-biased genes: insights from avian microarray data. BMC Genom 9:148

    Article  CAS  Google Scholar 

  • Manousaki T, Tsakogiannis A, Lagnel J et al (2014) The sex-specific transcriptome of the hermaphrodite sparid sharpsnout seabream (Diplodus puntazzo). BMC Genom 15:655

    Article  CAS  Google Scholar 

  • Matsunaga T, Ieda R, Hosoya S et al (2014) An efficient molecular technique for sexing tiger pufferfish (fugu) and the occurrence of sex reversal in a hatchery population. Fish Sci 80:933–942

    Article  CAS  Google Scholar 

  • McCarthy MM, De Vries GJ, Forger NG (2017) Sexual differentiation of the brain: a fresh look at mode, mechanisms, and meaning. In: Pfaff DW, Joëls M (eds) Hormones, brain, and behavior, 3rd edn. Academic Press, Oxford, pp 3–32

    Chapter  Google Scholar 

  • Mukhi S, Torres L, Patiño R (2007) Effects of larval–juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios. Gen Comp Endocrinol 150:486–494

    Article  CAS  PubMed  Google Scholar 

  • Munday PL, Buston PM, Warner RR (2006) Diversity and flexibility of sex change strategies in animals. Trends Ecol Evol 21:89–95

    Article  PubMed  Google Scholar 

  • Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A et al (2012) Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 191:163–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakane Y, Ikegami K, Ono H et al (2010) A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci USA 107:15264–15268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson DR, Koymans L, Kamataki T et al (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6:1–42

    Article  CAS  PubMed  Google Scholar 

  • Oliver J, Bayle JD (1982) Brain photoreceptors for the photoinduced testicular response in birds. Experientia 38:1020–1029

    Article  Google Scholar 

  • Parhar IS, Tosaki H, Sakuma Y, Kobayashi M (2001) Sex differences in the brain of goldfish: gonadotropin-releasing hormone and vasotocinergic neurons. Neuroscience 104:1099–1110

    Article  CAS  PubMed  Google Scholar 

  • Rashid H, Kitano H, Lee KH et al (2007) Fugu (Takifugu rubripes) sexual differentiation: CYP19 regulation and aromatase inhibitor induced testicular development. Sex Dev 1:311–322

    Article  CAS  PubMed  Google Scholar 

  • Reichwald K, Petzold A, Koch P et al (2015) Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163:1527–1538

    Article  CAS  PubMed  Google Scholar 

  • Ruf J, Carayon P (2006) Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 445:269–277

    Article  CAS  PubMed  Google Scholar 

  • Santos EM, Kille P, Workman VL, Paull GC, Tyler CR (2008) Sexually dimorphic gene expression in the brains of mature zebrafish. Comp Biochem Physiol Part A Mol Integrat Physiol 149:314–324

    Article  CAS  Google Scholar 

  • Schumacher M, Robel P, Baulieu EE (1996) Development and regeneration of the nervous system: a role for neurosteroids. Dev Neurosci 18:6–21

    Article  CAS  PubMed  Google Scholar 

  • Sellars MJ, Trewin C, Mcwilliam SM, Glaves RSE, Hertzler PL (2015) Transcriptome profiles of Penaeus (Marsupenaeus) japonicus animal and vegetal half-embryos: identification of sex determination, germ line, mesoderm, and other developmental genes. Mar Biotechnol 17:252–265

    Article  CAS  Google Scholar 

  • Sharma P, Patiño R (2013) Regulation of gonadal sex ratios and pubertal development by the thyroid endocrine system in zebrafish (Danio rerio). Gen Comp Endocrinol 184:111–119

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Tang S, Mayer GD, Patiño R (2016) Effects of thyroid endocrine manipulation on sex-related gene expression and population sex ratios in Zebrafish. Gen Comp Endocrinol 235:38–47

    Article  CAS  PubMed  Google Scholar 

  • Siopes TD, Wilson WO (1974) Extraocular modification of photoreception in intact and pinealectomized coturnix. Poult Sci 53:2035–2041

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasan R, Cai M, Bartfai R, Wang X, Christoffels A, Orban L (2008) Transcriptomic analyses reveal novel genes with sexually dimorphic expression in the zebrafish gonad and brain. PLoS One 3:e1791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tarttelin EE, Bellingham J, Hankins MW, Foster RG, Lucas RJ (2003) Neuropsin (Opn5): a novel opsin identified in mammalian neural tissue. FEBS Lett 554:410–416

    Article  CAS  PubMed  Google Scholar 

  • Tovo-Neto A, da Silva Rodrigues M, Habibi HR, Nóbrega RH (2018) Thyroid hormone actions on male reproductive system of teleost fish. Gen Comp Endocrinol 265:230–236

    Article  CAS  PubMed  Google Scholar 

  • Truss M, Chalepakis G, Piña B et al (1992) Transcriptional control by steroid hormones. J Steroid Biochem Mol Biol 41:241–248

    Article  CAS  PubMed  Google Scholar 

  • Ulc A, Gottschling C, Schäfer I et al (2017) Involvement of the guanine nucleotide exchange factor Vav3 in central nervous system development and plasticity. Biol Chem 398:663–675

    Article  CAS  PubMed  Google Scholar 

  • Vizziano-Cantonnet D, Anglade I, Pellegrini E et al (2001) Sexual dimorphism in the brain aromatase expression and activity, and in the central expression of other steroidogenic enzymes during the period of sex differentiation in monosex rainbow trout populations. Gen Comp Endocrinol 170:346–355

    Article  CAS  Google Scholar 

  • Wagner MS, Wajner SM, Maia AL (2008) The role of thyroid hormone in testicular development and function. J Endocrinol 199:351–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zheng M, Liu J, Liu Y, Lu J, Su X (2016) Sexually dimorphic gene expression associated with growth and reproduction of tongue sole (Cynoglossus semilaevis) revealed by brain transcriptome analysis. Int J Mol Sci 17:1402

    Article  PubMed Central  CAS  Google Scholar 

  • Xu J, Burgoyne PS, Arnold AP (2002) Sex differences in sex chromosome gene expression in mouse brain. Hum Mol Genet 11:1409–1419

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Deng X, Watkins R, Disteche CM (2008) Sex-specific differences in expression of histone demethylases Utx and Uty in mouse brain and neurons. J Neurosci 28:4521–4527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Lou B, Xu H, Li S, Geng Z (2013) Isolation and characterization of male-specific DNA markers in the rock bream Oplegnathus fasciatus. Mar Biotechnol 15:221–229

    Article  CAS  Google Scholar 

  • Yamaguchi A, Lee KH, Fujimoto H, Kadomura K, Yasumoto S, Matsuyama M (2006) Expression of the DMRT gene and its roles in early gonadal development of the Japanese pufferfish Takifugu rubripes. Comp Biochem Physiol Part D Genom Proteom 1:59–68

    Google Scholar 

  • Yan H, Shen X, Cui X et al (2018) Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in takifugu rubripes, gonad at the early stage of sex differentiation. Fish Physiol Biochem 44:1275–1290

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Schadt EE, Wang S et al (2006) Tissue-specific expression and regulation of sexually dimorphic genes in mice. Genome Res 16:995–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano A, Nicol B, Jouanno E, Guiguen Y (2014) Heritable targeted inactivation of the rainbow trout (Oncorhynchus mykiss) master sex determining gene using zinc-finger nucleases. Mar Biotechnol 16:243–250

    Article  CAS  Google Scholar 

  • Zhang Z, Lau SW, Zhang L, Ge W (2015a) Disruption of zebrafish follicle-stimulating hormone receptor (fshr) but not luteinizing hormone receptor (lhcgr) gene by TALEN leads to failed follicle activation in females followed by sexual reversal to males. Endocrinology 156:3747–3762

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Zhu B, Ge W (2015b) Genetic analysis of zebrafish gonadotropin (FSH and LH) functions by TALEN-mediated gene disruption. Mol Endocrinol 29:76–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to Jieming Jiang, Jiaxin Si, Weixiang Tang, Mingzheng Luo, Yu Liu, Wanrong Lu, Yihan Li and other students from our research team, who were involved in the rearing process and sampling of specimens. This research was supported by the grant from National Key R&D Program of China (2017YFB0404000), National Natural Science Foundation of China (31902347), Key R&D Program of Liaoning Province (2019JH2/10200015), Scientific, Technological and Innovation Program of Dalian (2018J12SN069), Key Laboratory of Mariculture & Stock Enhancement in North China’s Sea (2018-KF-13), Fundamental Research Funds for the Education Department of Liaoning Province (QL201706), DLOU Innovation and Entrepreneurship Training Program for College Students (201810158067). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection and analysis were performed by XS with help of LZ, ZY, WL, YW, XL, YL. The first draft of the manuscript was written by XS. HY and QL designed the experiment and reviewed the first draft. All authors read and approved the final draft.

Corresponding authors

Correspondence to Hongwei Yan or Qi Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

All animal work in our study were approved by the lab animal protection regulations and guidelines of People’s Republic of China (Order of the State Council of the People’s Republic of China No. 676) and Liaoning Province (Order No. 143rd of the people’s government of Liaoning province). And the animal protocols were approved according to the regulations established by Fishery Resources Enhancement Laboratory at Dalian Ocean University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 9 kb)

Supplementary material 2 (XLSX 150 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Yan, H., Zhang, L. et al. Transcriptomic analyses reveal novel genes with sexually dimorphic expression in Takifugu rubripes brain during gonadal sex differentiation. Genes Genom 42, 425–439 (2020). https://doi.org/10.1007/s13258-019-00914-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-019-00914-7

Keywords

Navigation