Skip to main content
Log in

RETRACTED ARTICLE: Cadmium permeates through calcium channels and activates transcriptomic complexity in wheat roots in response to cadmium stress

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

This article was retracted on 02 May 2018

This article has been updated

Abstract

Present study was conducted to elucidate the molecular regulation mechanisms and the critical genes involved in regulating wheat early responses to Cadmium (Cd) stress. Both ICP-AES and fluorescence labeling were used to find that the Cd2+ influx into wheat roots was significantly suppressed by pre-treatment with or in the presence of the Ca2+ channel blocker LaCl3, Verapamil and N-ethylmaleimide. RNA-seq technology was used to identify differentially expressed genes (DEGs) during 12 h of 100 μM Cd stress. Raw reads (n = 80,309,620 were obtained. 108,549 unigenes were identified and classified into 25 COG categories. 8584 DEGs were detected. Many DEGs were involved in defense and detoxification mechanisms including signaling protein kinases, transcription factors, metal transporters and biosynthesis-related enzymes. A Gene Ontology annotation analysis based on the DEGs indicated the presence of many categories including cellular process, cell part and binding, catalytic activity and transporter activity. The Kyoto encyclopedia of genes and genomes pathway analysis identified 107 terms that were enriched for all of the 1018 DEGs. Quantitative real-time PCR of 27 selected DEGs revealed that the expression patterns were consistent with the transcript abundance changes as identified by Solexa analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 02 May 2018

    The authors are retracting this article [1] because Figs. 1A, 1E and 1F have been taken without permission from the Master’s thesis of Qiaoling Wang.

References

  • Akhtera MF, Omelon CR, Gordon RA, Moser D, Macfiea SM (2014) Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environ Exp Bot 100:10–19

    Article  Google Scholar 

  • Berkelaar E, Hale B (2000) The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars. Can J Bot 78:381–387

    CAS  Google Scholar 

  • Bhati KK, Sharma S, Aggarwal S, Kaur M, Shukla V, Kaur J, Mantri S, Pandey AK (2015) Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat. Front Plant Sci 6:488

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya D, Sinha R, Hazra S, Datta R, Chattopadhyay S (2013) De novo transcriptome analysis using 454 pyrosequencing of the Himalayan Mayapple, Podophyllum hexandrum. BMC Genomics 14:748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobilya D, Briske-Anderson M, Reeve PG (1992) Zinc transport into endothelial cells is a facilitated process. J Cell Physiol 151:1–7

    Article  CAS  PubMed  Google Scholar 

  • Bourque S, Lemoine R, Sequeira-Legrand A, Fayolle L, Delrot S, Pugin A (2002) The elicitor cryptogein blocks glucose transport in tobacco cells. Plant Physiol 130:2177–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao F, Chen F, Sun H, Zhang G, Chen ZH, Wu F (2014a) Genome-wide transcriptomeand functional analysis of two contrasting genotypes reveals key genes for cadmium tolerance in barley. BMC Genom 15:611

    Article  Google Scholar 

  • Cao F, Wang R, Cheng W, Zeng F, Ahmed IM, Hu X, Zhang G, Wu F (2014b) Genotypic and environmental variation in cadmium, chromium, lead and copper in rice and approaches for reducing the accumulation. Sci Total Environ 496:275–281

    Article  CAS  PubMed  Google Scholar 

  • Cazarolli LH, Zanatta L, Alberton EH, Figueiredo MS, Folador P, Damazio RG, Pizzolatti MG, Silva FR (2008) Flavonoids: prospective drug candidates. Mini Rev Med Chem 8:1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Cebeci O, Kokturk B, Ergen N, Ozturkl L, Camak I, Budak H (2008) Differential expression of wheat transcriptomes in response to varying cadmium concentrations. Biol Plantarum 52:703–708

    Article  CAS  Google Scholar 

  • Chan DY, Hale BA (2004) Differential accumulation of Cd in durum wheat cultivars: uptake and retranslocation as sources of variation. J Exp Bot 55:2571–2579

  • Chen F, Wang F, Zhang GP, Wu FB (2008) Identification of barley varieties tolerant to cadmium toxicity. Biol Trace Elem Res 121:171–179

    Article  CAS  PubMed  Google Scholar 

  • Chen N, Yang Q, Pan L, Chi X, Chen M, Hu D, Yang Z, Wang T, Wang M, Yu S (2014) Identification of 30 MYB transcription factor genes and analysis of their expression during abiotic stress in peanut (Arachis hypogaea L.). Gene 533:332–345

    Article  CAS  PubMed  Google Scholar 

  • Chmielowska-Bak J, Lefevre I, Lutts S, Deckert J (2013) Short term signaling response in roots of young soybean seedlings exposed to cadmium stress. J Plant Physiol 15:1585–1594

    Article  Google Scholar 

  • Ci D, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W (2010) Cadmium stress in wheat seedlings: growth, cadmium accumulation and photosynthesis. Acta Physiol Plant 32:365–373

  • Dong J, Mao WH, Zhang GP, Wu FB, Cai Y (2007) Root excretion and plant tolerance to cadmium toxicity – a review. Plant Soil Environ 53:193–200

  • Esfahani ES, Shahpiri A (2015) Thioredoxin h isoforms from rice are differentially reduced by NADPH/thioredoxin or GSH/glutaredoxin systems. Int J Biol Macromol 74:243–248

    Article  Google Scholar 

  • Fotjová M, Kovařik A (2000) Genotoxic effect of cadmium is associated with apoptotic changes in tobacco cells. Plant Cell Environ 23:531–537

    Article  Google Scholar 

  • Gao LS, Shun Z, Sheng NB, Yan X, Lai QL, Qing SC (2015a) The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other. J Hazard Mater 299:94–102

    Article  Google Scholar 

  • Gao W, Nan T, Tan G, Zhao H, Tan W, Meng F, Li Z, Li QX, Wang B (2015b) Cellular and subcellular immunohistochemical localization and quantification of cadmium ions in wheat (Triticum aestivum). PLoS ONE 10:e0123779

    Article  PubMed  PubMed Central  Google Scholar 

  • Garbus I, Romero JR, Valarik M, Vanžurová H, Karafiátová M, Cáccamo M, Doležel J, Tranquilli G, Helguera M, Echenique V (2015) Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes. BMC Genomics 16:375

    Article  PubMed  PubMed Central  Google Scholar 

  • Gawroński P, Witoń D, Vashutina K, Bederska M, Betliński B, Rusaczonek A, Karpiński S (2014) Mitogen-activated protein kinase 4 is a salicylic acid-independent regulator of growth but not of photosynthesis in Arabidopsis. Mol Plant 7:1151–1166

    Article  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants e probing the role of sulfur. Plant Signal Behav 6:215–222

    Article  CAS  PubMed  Google Scholar 

  • Harris NS, Taylor GJ (2013) Cadmium uptake and partitioning in durum wheat during grain filling. BMC Plant Biol 13:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawrylak-Nowak B, Dresler S, Matraszek R (2015) Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants. Plant Physiol Bioch 94:225–234

    Article  CAS  Google Scholar 

  • He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z, Luo ZB (2011) Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plantarum 143:50–63

    Article  CAS  Google Scholar 

  • Horemans N, Raeymaekers T, Beek KV, Nowocin A, Blust R, Broos K, Cuypers A, Vangronsveld J, Guisez Y (2007) Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. J Exp Bot 58:4307–4317

    Article  CAS  PubMed  Google Scholar 

  • Ito Y, Shimazawa M, Akao Y, Nakajima Y, Seki N, Nozawa Y, Hara H (2006) Lig-8, a bioactive lignophenol derivative from bamboo lignin, protects against neuronal damage in vitro and in vivo. J Pharmacol Sci 102:196–204

    Article  CAS  PubMed  Google Scholar 

  • Kayum MA, Jung HJ, Park JI, Ahmed NU, Saha G, Yang TJ, Nou IS (2015) Identification and expression analysis of WRKY family genes under biotic and abiotic stresses in Brassica rapa. Mol Genet Genomics 290:79–95

    Article  PubMed  Google Scholar 

  • Khan MD, Mei L, Ali B, Chen Y, Cheng X, Zhu SJ (2013) Cadmium-induced upregulation of lipid peroxidation and reactive oxygen species caused physiological, biochemical, and ultrastructural changes in upland cotton seedlings. BioMed Res Int 2013:85–94

    Google Scholar 

  • Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta SL, Kebrom TH, Provart N, Patel R, Myers CR, Reidel EJ, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell TP (2010) The developmental dynamics of the maize leaf transcriptome. Nat Genet 42:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Li L, Liu X, Peijnenburg WJ, Zhao J, Chen X, Yu J, Wu H (2012) Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa. Ecotoxicol Environ Saf 75:1–7

    Article  PubMed  Google Scholar 

  • Li Y, Wang N, Zhao F, Song X, Yin Z, Huang R, Zhang C (2014) Changes in the transcriptomic profiles of maize roots in response to iron-deficiency stress. Plant Mol Biol 85:349–363

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yao W, Fu Y, Li S, Guo Q (2015) De novo assembly and discovery of genes that are involved in drought tolerance in Tibetan Sophora moorcroftiana. PLoS ONE 10:e111054

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Shi X, Qian M, Zheng L, Lian C, Xia Y, Shen Z (2015) Copper-induced hydrogen peroxide upregulation of a metallothionein gene, OsMT2c, from Oryza sativa L. confers copper tolerance in Arabidopsis thaliana. J Hazard Mater 294:99–108

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lomaglio T, Rocco M, Trupiano D, De Zio E, Grosso A, Marra M, Delfine S, Chiatante D, Morabito D, Scippa GS (2015) Effect of short-term cadmium stress on Populus nigra L. detached leaves. J Plant Physiol 182:40–48

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Kanakala S, He Y, Zhang J, Zhong X (2015) Transcriptome sequence analysis of an ornamental plant, Ananas comosus var.bracteatus, revealed the potential unigenes involved in terpenoid and phenylpropanoid biosynthesis. PLoS ONE 10:e0119153

    Article  PubMed  PubMed Central  Google Scholar 

  • Maynaud G, Brunel B, Mornico D, Durot M, Severac D, Dubois E, Navarro E, Cleyet-Marel JC, Le Quéré A (2013) Genome-wide transcriptional responses of two metal-tolerant symbiotic Mesorhizobium isolates to zinc and cadmium exposure. BMC Genom 14:292

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29:653–671

    Article  PubMed  Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103

    Article  CAS  PubMed  Google Scholar 

  • Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman JF (2015) Target or barrier? The cell wall of early- and later-diverging plants vs cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548

    Article  CAS  PubMed  Google Scholar 

  • Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Costantino P, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223:180–190

    Article  CAS  PubMed  Google Scholar 

  • Rapaport F, Khanin R, Liang Y, Pirun M, Krek A, Zumbo P, Mason CE, Socci ND, Betel D (2013) Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol 14:R95

    Article  PubMed  PubMed Central  Google Scholar 

  • Rogers MF, Thomas J, Reddy AS, Ben-Hur A (2012) SpliceGrapher: detecting patterns of alternative splicing from RNA-seq data in the context of gene models and EST data. Genome Biol 13(1):R4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahpiri A, Soleimanifard I, Asadollahi MA (2015) Functional characterization of a type 3 metallolthionein isoform (OsMTI-3a) from rice. Int J Biol Macromol 73:154–159

    Article  CAS  PubMed  Google Scholar 

  • Shi T, Gao Z, Wang L, Zhang Z, Zhuang W, Sun H, Zhong W (2012) Identification of differentially-expressed genes associated with pistil abortion in Japanese apricot by genome-wide transcriptional analysis. PLoS ONE 7:e47810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci USA 111:15699–15704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan JH, Muhammad D, Warpeha KM (2014) Phenylalanine is required to promote specific developmental responses and prevents cellular damage in response to ultraviolet light in soybean (Glycine max) during the seed-to-seedling transition. PLoS ONE 9:e112301

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun J, Cui J, Luo C, Gao L, Chen Y, Shen Z (2013) Contribution of cell walls, nonprotein thiols, and organic acids to cadmium resistance in two cabbage varieties. Arch Environ Contam Toxicol 64:243–252

    Article  CAS  PubMed  Google Scholar 

  • Takasaki H, Maruyama K, Kidokoro S, Ito Y, Fujita Y, Shinozaki K, Yamaquchi-Shinozaki K, Nakashima K (2010) The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284:173–183

    Article  CAS  PubMed  Google Scholar 

  • Tan SY, Jiang QY, Zhuo F, Liu H, Wang YT, Li SS, Ye ZH, Jing YX (2015) Effect of inoculation with glomus versiforme on cadmium accumulation, antioxidant activities and phytochelatins of Solanum photeinocarpum. PLoS ONE 10(7):e0132347

    Article  PubMed  PubMed Central  Google Scholar 

  • Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ (2012) Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS ONE 7:e36234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thamilarasan SK, Park JI, Jung HJ, Nou IS (2014) Genome-wide analysis of the distribution of AP2/ERF transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea. BMC Genom 15:422

    Article  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13(2):132–138

    Article  CAS  PubMed  Google Scholar 

  • Wang WX, Fisher NS (1999) Effects of calcium and metabolic inhibitors on trace element uptake in two marine bivalves. J Exp Mar Biol Ecol 236:149–164

    Article  CAS  Google Scholar 

  • Wang Y, Gao C, Liang Y, Wang C, Yang C, Liu G (2010) A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants. J Plant Physiol 167(3):222–230

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C, Liu L (2013) Transcriptome profiling of radish (Raphanus sativus L.) root and identification of genes involved in response to lead (Pb) stress with next generation Sequencing. PLoS ONE 8:e66539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss GB (1974) Cellular pharmacology of lanthanum. Annu Rev Pharmacol 14:343–354

    Article  CAS  Google Scholar 

  • Xu ZS, Xia LQ, Chen M, Cheng XG, Zhang RY, Li LC, Zhao YX, Lu Y, Ni ZY, Liu L, Qiu ZG, Ma YZ (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65(6):719–732

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Liu C, Cai S, Zhang L, Xiong Z (2015) Heterologous expression and comparative characterization of vacuolar invertases from Cu-tolerant and non-tolerant populations of Elsholtzia haichowensis. Plant Cell Rep 34:1781

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Fujishiro H, Miyataka H, Oyama TM, Hasegawa T, Seko Y, Miura N, Himeno S (2009) Dichotomous effects of lead acetate on the expression of metallothionein in the liver and kidney of mice. Biol Pharm Bull 32:1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Feng J, Lu J, Yang Y, Zhang X, Wan D, Liu J (2014a) Transcriptome differences between two sister desert poplar species under salt stress. BMC Genom 15:337

    Article  Google Scholar 

  • Zhang L, Liu G, Zhao G, Xia C, Jia J, Liu X, Kong X (2014b) Characterization of a wheat R2R3-MYB transcription factor gene, TaMYB19, involved in enhanced abiotic stresses in Arabidopsis. Plant Cell Physiol 55:1802–1812

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Pei Y, Wang H, Jin Z, Liu Z, Qiao Z, Fang H, Zhang Y (2015a) Hydrogen sulfide alleviates cadmium-induced cell death through restraining ROS accumulation in roots of Brassica rapa L. ssp. pekinensis. Oxid Med Cell Longev 2015 804603

  • Zhang M, Kong X, Xu X, Li C, Tian H, Ding Z (2015b) Comparative transcriptome profiling of the maize primary, crown and seminal root in response to salinity stress. PLoS ONE 10:e0121222

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Stroud JL, Eagling T, Dunham SJ, McGrath SP, Shewry PR (2010) Accumulation, distribution, and speciation of arsenic in wheat grain. Environ Sci Technol 44(14):5464–5468

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the other members of our laboratory for help in the research and for insightful remarks. This work was supported by the National Science Foundation of China (No. 31501234) and the Program of Yantai Entry-Exit Inspection and Quarantine Bureau (SK201419). Thank the referees for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieyu Yue.

Ethics declarations

Conflict of interest

Jieyu Yue, Xin Zhang and Ning Liu declare that they have no conflict of interest.

Studies with human or animal research

This article does not contain any studies with human subjects or animals performed by any of the authors.

Additional information

The authors are retracting this article because Figures 1A, 1E and 1F have been taken without permission from the Master’s thesis of Qiaoling Wang, “The mechanism of Cd stress on the physiological and cytotoxicity of onion seedlings” submitted to the College of Life Sciences, Tianjin Normal University in April 2014. All authors agree to this retraction.

Electronic supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, J., Zhang, X. & Liu, N. RETRACTED ARTICLE: Cadmium permeates through calcium channels and activates transcriptomic complexity in wheat roots in response to cadmium stress. Genes Genom 39, 183–196 (2017). https://doi.org/10.1007/s13258-016-0488-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-016-0488-1

Keywords

Navigation