Skip to main content
Log in

Statistical analysis and genetic diversity of three dog breeds using simple sequence repeats

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

There are more than 400 pure dog breeds developed through intentional artificial selection and purebred breeding. Purebred animals have higher risk of inbreeding depression and hereditary diseases. We investigated the genetic diversity and structure of three dog breeds in South Korea by using 12 microsatellite loci for one Korean native dog breed, Sapsaree, and two foreign breeds, German shepherd and Belgian Malinois. The mean allele number of nine loci across all dog breeds was 4.833, and the number of alleles per locus ranged from 2 to 8. The mean of expected and observed heterozygosity were 0.415 and 0.577, respectively. Sapsaree, Korean native dog, had higher level of genetic diversity than the foreign German shepherd and Belgian Malinois. The highest mean value of polymorphism information content was found in Sapsaree (0.480), followed by Belgian Malinois (0.373) and German shepherd (0.355). Pairwise genetic differentiation was estimated using fixation index F ST. Sapsaree and German shepherd (F ST = 0.2536) and Sapsaree and Belgian Malinois (F ST = 0.2522) had very great genetic differentiation, while moderate level of genetic differentiation was observed between German shepherd and Belgian Malinois (F ST = 0.1003). These genetic information and structure of the three dog breeds will be effective in conservation and preservation of the genetic diversity of the three dog breeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akey JM, Ruhe AL, Akey DT, Wong AK, Connelly CF, Madeoy J, Nicholas TJ, Neff MW (2010) Tracking footprints of artificial selection in the dog genome. Proc Natl Acad Sci USA 107:1160–1165

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allendorf FW, Luikart GH (2007) Conservation and the genetics of populations. Blackwell, Malden

    Google Scholar 

  • Botstein D, White RL, Skalnick MH, Davies RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314331

    Google Scholar 

  • DeNise S, Johnston E, Halverson J, Marshall K, Rosenfeld D, McKenna S, Sharp T, Edwards J (2004) Power of exclusion for parentage verification and probability of match for identity in American kennel club breeds using 17 canine microsatellite markers. Anim Genet 35:14–17

    Article  CAS  PubMed  Google Scholar 

  • Emert PR (1985) Law enforcement dogs. Crestwood House, New York

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the sofrware structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falconer DS (1981) Introduction to quantitative genetics, Ed 2. Longmans Green, London

    Google Scholar 

  • Goldbecker WM, Hart EH (1967) This is the german shepherd. TFH Publications Inc, Jersey City

    Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Ha JH, Kim KS (1998) A review on the origin of Korean native dogs. Korean J Anim Sci 40:701–710

    Google Scholar 

  • Han KI, Alam M, Lee YM, Lee DH, Ha JH, Kim JJ (2010) A study on morphology and behavior of the Sapsaree: A Korean native dog (Canis familiaris). JAST 52:481–490

  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kang BT, Kim KS, Min MS, Chae YJ, Kang JW, Yoon J, Choi J, Seong JK, Park HC, An J et al (2009) Microsatellite loci analysis for the genetic variability and the parentage test of five dog breeds in South Korea. Genes Genet Syst 84(3):245–251

    Article  CAS  PubMed  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  • Kim KS, Tanabe Y, Park CK, Ha JH (2001) Genetic variability in East Asian dogs using microsatellite loci analysis. J Hered 92:398–403

    Article  CAS  PubMed  Google Scholar 

  • Koskinen MT, Bredbacka P (2000) Assessment of the population structure of five finnish dog breeds with microsatellite. Anim Genet 31:310–317

    Article  CAS  PubMed  Google Scholar 

  • Kwon YJ, Choi BH, Eo JW, Kim CR, Jung YD, Lee JR, Cho YR, Gim JA, Lee DH, Ha JH et al (2014) Genetic structure and variability of the working dog inferred from microsatellite marker analysis. Genes Genom 36:197–203

    Article  CAS  Google Scholar 

  • Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  CAS  PubMed  Google Scholar 

  • Levinson G, Gutman GA (1987) High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucl Acids Res 15:5323–5338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moody JA, Clark LA, Murphy KE (2006) Working dogs: history and applications. In: Ostrander EA, Giger U, Lindblad-Toh K (eds) The dog and its genome. Cold Spring Harbor Laboratory Press, Woodbury, pp 1–18

    Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:284–291

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for windows and linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sargan D (2004) IDID: inherited diseases in dogs: web-based information for canine inherited disease genetics. Mamm Genome 15:503–506

    Article  CAS  PubMed  Google Scholar 

  • Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T (2002) Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610–1613

    Article  CAS  PubMed  Google Scholar 

  • Schlotterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371

    Article  CAS  PubMed  Google Scholar 

  • Schlotterer C, Tautz D (1992) Slippage synthesis of simple sequence DNA. Nucl Acids Res 20:211–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vaysse A, Ratnakumar A, Derrien T, Axelsson E, Rosengren PG, Sigurdsson S, Fall T, Seppala EH, Hansen MS, Lawley CT et al (2011) Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet 7:e1002316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waybne RK, Ostrander EA (1999) Origin, genetic diversity, and genome structure of the domestic dog. BioEssays 21:247–257

    Article  Google Scholar 

  • Weber JL, Wong C (1993) Mutation of human short tandem repeats. Hum Mol Genet 2:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright S (1978) Evolution and the genetics of population. vol 4: variability within and among natural populations. University of Chicago Press, Chicago

    Google Scholar 

  • Zajc I, Sampson J (1999) Utility of canine microsatellites in revealing the realtionships of pure bred dogs. J Hered 90:104–107

    Article  CAS  PubMed  Google Scholar 

  • Zerjal T, Beckman L, Beckman G, Mikelsaar AV, Krumina A, Kucinskas V, Hurles ME, Tyler-Smith C (2001) Geographical, linguistic, and cultural influences on genetic diversity: Y-chromosomal distribution in Northern European Populations. Mol Biol Evol 18(6):1077–1087

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the funding provided by the AGENDA project (Project No. PJ009254) from the National Institute of Animal Science, Rural Development Administration (RDA).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heui-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H., Choi, BH., Eo, J. et al. Statistical analysis and genetic diversity of three dog breeds using simple sequence repeats. Genes Genom 36, 883–889 (2014). https://doi.org/10.1007/s13258-014-0237-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-014-0237-2

Keywords

Navigation