Skip to main content

Advertisement

Log in

Automated classification of diabetic retinopathy through reliable feature selection

  • Scientific Paper
  • Published:
Physical and Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR) is a complication of diabetes mellitus that damages the blood vessels in the retina. DR is considered a serious vision-threatening impediment that most diabetic subjects are at risk of developing. Effective automatic detection of DR is challenging. Feature extraction plays an important role in the effective classification of disease. Here we focus on a feature extraction technique that combines two feature extractors, speeded up robust features and binary robust invariant scalable keypoints, to extract the relevant features from retinal fundus images. The selection of top-ranked features using the MR-MR (maximum relevance-minimum redundancy) feature selection and ranking method enhances the efficiency of classification. The system is evaluated across various classifiers, such as support vector machine, Adaboost, Naive Bayes, Random Forest, and multi-layer perception (MLP) when giving input image features extracted from standard datasets (IDRiD, MESSIDOR, and DIARETDB0). The performances of the classifiers were analyzed by comparing their specificity, precision, recall, false positive rate, and accuracy values. We found that when the proposed feature extraction and selection technique is used together with MLP outperforms all the other classifiers for all datasets in binary and multiclass classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cheung N, Wang JJ, Klein R, Couper DJ, Sharrett AR, Wong TY (2007) Diabetic retinopathy and the risk of coronary heart disease. Diabetes Care 30(7):1742–1746. https://doi.org/10.2337/dc07-0264

    Article  PubMed  Google Scholar 

  2. Zachariah S, Wykes W, Yorston D (2015) Grading diabetic retinopathy (dr) using the scottish grading protocol. Commun Eye Health 28:72–73

    Google Scholar 

  3. Abramoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208. https://doi.org/10.1109/RBME.2010.2084567

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ali R, Usman Akram M (2018) Analysing vascular structure to determine intra retinal microvascular abnormalities (IRMA), pp 49–52. https://doi.org/10.1109/CIBEC.2018.8641825

  5. Jemshi KM, Gopi VP, Issac Niwas S (2018) Development of an efficient algorithm for the detection of macular edema from optical coherence tomography images. Int J Comput Assist Radiol Surg 13(9):1369–1377. https://doi.org/10.1007/s11548-018-1795-6

    Article  CAS  PubMed  Google Scholar 

  6. Sreejini K, Govindan V (2019) Retrieval of pathological retina images using bag of visual words and plsa model. Int J Eng Sci Technol 22:777–785. https://doi.org/10.1016/j.jestch.2019.02.002

    Article  Google Scholar 

  7. Tareen SAK, Saleem Z (2018) A comparative analysis of sift, surf, kaze, akaze, orb, and brisk. In: International conference on computing, mathematics and engineering technologies (iCoMET), pp 1–10. https://doi.org/10.1109/ICOMET.2018.8346440

  8. Kamil R, Al-Saedi K, Al-Azawi R (2018) An accurate system to measure the diabetic retinopathy using svm classifier. Ciência e Técnica Vitivinícola 33:135–139

    Google Scholar 

  9. Lupascu CA, Tegolo D, Trucco E (2010) FABC: retinal vessel segmentation using adaboost. IEEE Trans Inf Technol Biomed 14(5):1267–1274. https://doi.org/10.1109/TITB.2010.2052282

    Article  PubMed  Google Scholar 

  10. Kausu T, Gopi VP, Wahid KA, Doma W, Niwas SI (2018) Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images. Biocybern Biomed Eng 38(2):329–341. https://doi.org/10.1016/j.bbe.2018.02.003

    Article  Google Scholar 

  11. Abdulmunem M, Fatoohi Z (2018) Propose retina identification system based on the combination of surf detector and brisk descriptor. Iraqi J Sci 59(2B):946–955

    Google Scholar 

  12. Akyol K, BAYIR S, Sen B (2017) A decision support system for early-stage diabetic retinopathy lesions. Int J Adv Comput Sci Appl 8:369–379. https://doi.org/10.14569/IJACSA.2017.081249

    Article  Google Scholar 

  13. Naga Sai Prasad VG, Ratna B, Rajesh V (2018) Feature extraction based retinal image analysis for bright lesion classification in fundus image. Biomed Res 29:3648–3653. https://doi.org/10.4066/biomedicalresearch.29-16-2170

    Article  Google Scholar 

  14. de la Calleja J, Tecuapetla L, Auxilio Medina M, Bárcenas E, Urbina Nájera AB (2014) LBP and machine learning for diabetic retinopathy detection. Int Conf Intell Data Eng Autom Learn 8669:110–117. https://doi.org/10.1007/978-3-319-10840-7_14

    Article  Google Scholar 

  15. Issac Niwas S, Lin W, Kwoh CK, Kuo CJ, Sng CC, Aquino MC, Chew PTK (2016) Cross-examination for angle-closure glaucoma feature detection. IEEE J Biomed Health Inform 20(1):343–354. https://doi.org/10.1109/JBHI.2014.2387207

    Article  Google Scholar 

  16. Sidibé D, Sadek I, Mériaudeau F (2015) Discrimination of retinal images containing bright lesions using sparse coded features and svm. Comput Biol Med 62:175–184. https://doi.org/10.1016/j.compbiomed.2015.04.026

    Article  PubMed  Google Scholar 

  17. Jelinek HF, Pires R, Padilha R, Goldenstein S, Wainer J, Bossomaier T, Rocha A (2012) Data fusion for multi-lesion diabetic retinopathy detection. In: 25th IEEE international symposium on computer-based medical systems (CBMS), pp 1–4. https://doi.org/10.1109/CBMS.2012.6266342

  18. Panchal P, Bhojani R, Panchal T (2016) An algorithm for retinal feature extraction using hybrid approach. Procedia Comput Sci 79:61–68. https://doi.org/10.1016/j.procs.2016.03.009. Proceedings of international conference on communication, computing and virtualization (ICCCV) 2016

    Article  Google Scholar 

  19. Li H, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51(2):246–254. https://doi.org/10.1109/TBME.2003.820400

    Article  PubMed  Google Scholar 

  20. Gopi VP, Anjali MS, Niwas SI (2017) Pca-based localization approach for segmentation of optic disc. Int J Comput Assist Radiol Surg 12(12):2195–2204. https://doi.org/10.1007/s11548-017-1670-x

    Article  PubMed  Google Scholar 

  21. Sudha V, Karthikeyan C (2018) Analysis of diabetic retinopathy using naive bayes classifier technique. Int J Eng Technol 7:440–442. https://doi.org/10.14419/ijet.v7i2.21.12462

    Article  Google Scholar 

  22. Rahim SS, Palade V, Shuttleworth J, Jayne C (2016) Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Inform 3(4):249–267. https://doi.org/10.1007/s40708-016-0045-3

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Leonardis A, Bischof H, Pinz A (eds) Computer vision—ECCV 2006, vol 3951. Springer, Berlin, pp 404–417

    Chapter  Google Scholar 

  24. Leutenegger S, Chli M, Siegwart RY (2011) Brisk: binary robust invariant scalable keypoints. In: 2011 international conference on computer vision, pp 2548–2555. https://doi.org/10.1109/ICCV.2011.6126542

  25. Gularte A, Thomasi C, De Bem R, Adamatti D (2013) Performance evaluation of brisk algorithm on mobile devices. VISAPP 2013 Proc Int Conf Comput Vis Theory Appl 2:5–11

    Google Scholar 

  26. Peng H, Long F, Ding C (2005) Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  PubMed  Google Scholar 

  27. Kandhasamy JP, Kadry Balamurali S, Ramasamy LK (2019) Diagnosis of diabetic retinopathy using multi level set segmentation algorithm with feature extraction using svm with selective features. Multimed Tools Appl. https://doi.org/10.1007/s11042-019-7485-8

    Article  Google Scholar 

  28. Daqi G, Tao Z (2007) Support vector machine classifiers using RBF kernels with clustering-based centers and widths. In: 2007 international joint conference on neural networks, pp 2971–2976. https://doi.org/10.1109/IJCNN.2007.4371433

  29. Wang R (2012) Adaboost for feature selection, classification and its relation with svm, a review. Phys Procedia 25:800–807. https://doi.org/10.1016/j.phpro.2012.03.160. International conference on solid state devices and materials science, macao

    Article  Google Scholar 

  30. Schapire RE (2013) Explaining AdaBoost. Springer, Berlin, pp 37–52. https://doi.org/10.1007/978-3-642-41136-6_5

    Book  Google Scholar 

  31. Roychowdhury A, Banerjee S (2018) Random forests in the classification of diabetic retinopathy retinal images. In: Bhattacharyya S, Gandhi T, Sharma K, Dutta P (eds) Advanced computational and communication paradigms, vol 475. Springer, Singapore, pp 168–176. https://doi.org/10.1007/978-981-10-8240-5_19

    Chapter  Google Scholar 

  32. Breiman L (2001a) Random forests. Mach Learn 45(1):5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  33. Breiman L (2001b) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  34. Huang G-B, Chen Y-Q, Babri HA (2000) Classification ability of single hidden layer feed forward neural networks. IEEE Trans Neural Netw 11(3):799–801. https://doi.org/10.1109/72.846750

    Article  CAS  PubMed  Google Scholar 

  35. Saifuddin H, Vijayalakshmi H (2016) Prediction of diabetic retinopathy using multi layer perceptron. Int J Adv Res 4:658–664. https://doi.org/10.21474/IJAR01/714

    Article  Google Scholar 

  36. Yadav S, Shukla S (2016) Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In: 2016 IEEE 6th international conference on advanced computing (IACC), pp 78–83. https://doi.org/10.1109/IACC.2016.25

  37. Visa S, Ramsay B, Ralescu A, Knaap E (2011) Confusion matrix-based feature selection. CEUR Workshop Proc 710:120–127

    Google Scholar 

  38. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian diabetic retinopathy image dataset (IDRiD): a database for diabetic retinopathy screening research. Data 3:1–8

    Article  Google Scholar 

  39. Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, Charton B, Klein JC (2014) Feedback on a publicly distributed database: the messidor database. Image Anal Stereol 33(3):231–234. https://doi.org/10.5566/ias.1155

    Article  Google Scholar 

  40. Kalesnykiene V, kristian Kamarainen J, Lensu L, Sorri I, Uusitalo H, Kälviäinen H, Pietilä J (2007) DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms

  41. He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778

  42. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun P. Gopi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study, formal consent is not required.

Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, S., Gopi, V.P. & Palanisamy, P. Automated classification of diabetic retinopathy through reliable feature selection. Phys Eng Sci Med 43, 927–945 (2020). https://doi.org/10.1007/s13246-020-00890-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-020-00890-3

Keywords

Navigation