Skip to main content
Log in

A proton therapy system in Nagoya Proton Therapy Center

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The purpose of this paper is to describe an outline of a proton therapy system in Nagoya Proton Therapy Center (NPTC). The NPTC has a synchrotron with a linac injector and three treatment rooms: two rooms are equipped with a gantry and the other one is equipped with a fixed horizontal beamline. One gantry treatment room has a pencil beam scanning treatment delivery nozzle. The other two treatment rooms have a passive scattering treatment delivery nozzle. In the scanning treatment delivery nozzle, an energy absorber and an aperture system to treat head and neck cancer have been equipped. In the passive treatment delivery nozzle, a multi-leaf collimator is equipped. We employ respiratory gating to treat lung and liver cancers for passive irradiation. The proton therapy system passed all acceptance tests. The first patient was treated on February 25, 2013, using passive scattering fixed beams. Respiratory gating is commonly used to treat lung and liver cancers in the passive scattering system. The MLCs are our first choice to limit the irradiation field. The use of the aperture for scanning irradiation reduced the lateral fall off by half or less. The energy absorber and aperture system in scanning delivery is beneficial to treat head and neck cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Smith A, Gillin M, Bues M et al (2009) The M. D. Anderson proton therapy system. Med Phys 36:4068–4083

    Article  PubMed  Google Scholar 

  2. Yasui K, Toshito T, Omachi C et al (2015) A patient-specific aperture system with an energy absorber for spot scanning proton beams: verification for clinical application. Med Phys 42:6999–7010

    Article  PubMed  Google Scholar 

  3. Minohara S, Kanai T, Endo M et al (2000) Respiratory gated irradiation system for heavy-ion radiotherapy. Int J Radiat Oncol Biol Phys 47:1097–1103

    Article  CAS  PubMed  Google Scholar 

  4. Tsunashima Y, Vedam S, Dong L et al (2008) Efficiency of respiratory-gated delivery of synchrotron-based pulsed proton irradiation. Phys Med Biol 53:1947–1959

    Article  PubMed  Google Scholar 

  5. Gillin MT, Sahoo N, Bues M et al (2010) Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M. D. Anderson Cancer Center, Proton Therapy Center. Houston. Med Phys 37:154–163

    Article  PubMed  Google Scholar 

  6. Zhu XR, Poenisch F, Lii M et al (2013) Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system. Med Phys 40:041723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Japan Society of Medical Physics (JSMP) (2012) Standard dosimetry of absorbed dose in external beam radiotherapy. Tsuushou Sangyou Kenkyuusya, Tokyo)

    Google Scholar 

  8. Boon SN, Van Luijk P, Schippers M et al (1998) Fast 2D phantom dosimetry for scanning proton beams. Med Phys 25:464–475

    Article  CAS  PubMed  Google Scholar 

  9. Olsher RH, Hsu H, Beverding A et al (2000) WENDI: an improved neutron rem meter. Health Phys 79:170–181

    Article  CAS  PubMed  Google Scholar 

  10. Yonai S, Matsufuji N, Kanai T et al (2008) Measurement of neutron ambient dose equivalent in passive carbon-ion and proton radiotherapies. Med Phys 35:4782–4792

    Article  CAS  PubMed  Google Scholar 

  11. Pedroni E, Scheib S, Bohringer T et al (2005) Experimental characterization and physical modeling of the dose distribution of scanned proton pencil beams. Phys Med Biol 50:541–561

    Article  CAS  PubMed  Google Scholar 

  12. Inaniwa T, Furukawa T, Nagano A et al (2009) Field-size effect of physical doses in carbon-ion scanning using range shifter plates. Med Phys 36:2889–2897

    Article  PubMed  Google Scholar 

  13. Schaffner B, Pedroni E, Lomax A (1999) Dose calculation models for proton treatment planning using a dynamic beam delivery system: an attempt to include density heterogeneity effects in the analytical dose calculation. Phys Med Biol 44:27–41

    Article  CAS  PubMed  Google Scholar 

  14. Park PC, Zhu XR, Lee AK et al (2012) A beam-specific planning target volume (PTV) design for proton therapy to account for setup and range uncertainties. Int J Radiat Oncol Biol Phys 82:e329–e336

    Article  PubMed  Google Scholar 

  15. Cao W, Lim G, Li X et al (2013) Incorporating deliverable monitor unit constraints into spot intensity optimization in intensity-modulated proton therapy treatment planning. Phys Med Biol 58:5113–5125

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Zhang X, Lii M et al (2008) Incorporating partial shining effects in proton pencil-beam dose calculation. Phys Med Biol 53:605–616

    Article  PubMed  Google Scholar 

  17. Kanematsu N, Akagi T, Takatani Y et al (2006) Extended collimator model for pencil-beam dose calculation in proton radiotherapy. Phys Med Biol 51:4807–4817

    Article  PubMed  Google Scholar 

  18. Sahoo N, Zhu XR, Arjomandy B et al (2008) A procedure for calculation of monitor units for passively scattered proton radiotherapy. Med Phys 35:5088–5097

    Article  PubMed  Google Scholar 

  19. Bert C, Durante M (2011) Motion in radiotherapy: particle therapy. Phys Med Biol 56:R113–R144

    Article  CAS  PubMed  Google Scholar 

  20. Pedroni E, Bacher R, Blattmann H et al (1995) The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Med Phys 22:37–53

    Article  CAS  PubMed  Google Scholar 

  21. Sawakuchi GO, Zhu XR, Poenisch F et al (2010) Experimental characterization of the low-dose envelope of spot scanning proton beams. Phys Med Biol 55:3467–3478

    Article  PubMed  Google Scholar 

  22. Kanai T, Kawachi K, Matsuzawa H et al (1983) Broad beam three-dimensional irradiation for proton radiotherapy. Med Phys 10:344–346

    Article  CAS  PubMed  Google Scholar 

  23. Lomax A (1999) Intensity modulation methods for proton radiotherapy. Phys Med Biol 44:185–205

    Article  CAS  PubMed  Google Scholar 

  24. Furukawa T, Inaniwa T, Sato S et al (2010) Moving target irradiation with fast rescanning and gating in particle therapy. Med Phys 37:4874–4879

    Article  PubMed  Google Scholar 

  25. Shimizu S, Miyamoto N, Matsuura T et al (2014) A proton beam therapy system dedicated to spot-scanning increases accuracy with moving tumors by real-time imaging and gating and reduces equipment size. PLoS One 9:e94971

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number 24601013. We are grateful to Prof. Masataka Komori and Ms. Eri Sekihara for the measurement of neutron ambient dose equivalent. We also wish to thank Hitachi Ltd. for their outstanding design, effort for installation, and sustained work towards the stable operation of the system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Toshito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toshito, T., Omachi, C., Kibe, Y. et al. A proton therapy system in Nagoya Proton Therapy Center. Australas Phys Eng Sci Med 39, 645–654 (2016). https://doi.org/10.1007/s13246-016-0456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-016-0456-8

Keywords

Navigation