Skip to main content
Log in

Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In the present study, the effects of airway blockage in chronic bronchitis disease on the flow patterns and transport/deposition of micro-particles in a human symmetric triple bifurcation lung airway model, i.e., Weibel’s generations G3–G6 was investigated. A computational fluid and particle dynamics model was implemented, validated and applied in order to evaluate the airflow and particle transport/deposition in central airways. Three breathing patterns, i.e., resting, light activity and moderate exercise, were considered. Using Lagrangian approach for particle tracking and random particle injection, an unsteady particle tracking method was performed to simulate the transport and deposition of micron-sized aerosol particles in human central airways. Assuming laminar, quasi-steady, three-dimensional air flow and spherical non-interacting particles in sequentially bifurcating rigid airways, airflow patterns and particle transport/deposition in healthy and chronic bronchitis (CB) affected airways were evaluated and compared. Comparison of deposition efficiency (DE) of aerosols in healthy and occluded airways showed that at the same flow rates DE values are typically larger in occluded airways. While in healthy airways, particles deposit mainly around the carinal ridges and flow dividers—due to direct inertial impaction, in CB affected airways they deposit mainly on the tubular surfaces of blocked airways because of gravitational sedimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(C_{D}\) :

Drag coefficient

\(D\) :

Inlet diameter (m)

\(d_{p}\) :

Particle diameter (m)

\(f\) :

Forces acting on particles (N)

\(F_{D}\) :

Drag force (N)

\(g_{z}\) :

z component gravitational acceleration (m/s2)

\(p\) :

Pressure (N/m2)

\(Re\) :

Reynolds number

\(St\) :

Stokes number

\(t\) :

Time (s)

\(U\) :

Inlet mean velocity (m/s)

\(u\) :

Velocity (m/s)

ρ :

Density (kg/m3)

μ :

Dynamic viscosity of fluid (kg/ms)

ν :

Kinematic viscosity (m2/s)

f :

Fluid

p :

Particle

References

  1. Sul B et al (2014) A computational study of the respiratory airflow characteristics in normal and obstructed human airways. Comput Biol Med 52:130–143

    Article  PubMed  Google Scholar 

  2. Schiller-Scotland CF et al (1996) Deposition of inspired aerosol particles within the respiratory tract of patients with obstructive lung disease. Toxicol Lett 88(1):255–261

    Article  CAS  PubMed  Google Scholar 

  3. Kim CS, Kang TC (1997) Comparative measurement of lung deposition of inhaled fine particles in normal subjects and patients with obstructive airway disease. Am J Respir Crit Care Med 155(3):899–905

    Article  CAS  PubMed  Google Scholar 

  4. Chalupa D et al (2004) Ultrafine particle deposition in subjects with asthma. Environ Health Perspect 112:879–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Martonen T et al (2003) In silico modeling of asthma. Adv Drug Deliv Rev 55(7):829–849

    Article  CAS  PubMed  Google Scholar 

  6. Segal R et al (2002) Computer simulations of particle deposition in the lungs of chronic obstructive pulmonary disease patients. Inhalation Toxicol 14(7):705–720

    Article  CAS  Google Scholar 

  7. Padrid PA et al (1990) Canine chronic bronchitis. A pathophysiologic evaluation of 18 cases. J Vet Intern Med 4(3):172–180

    Article  CAS  PubMed  Google Scholar 

  8. Rozanski E (2014) Canine chronic bronchitis. Veterinary clinics of North America: small animal practice. J Vet Intern Med 44(1):107–116

    Google Scholar 

  9. Comer J, Kleinstreuer C, Zhang Z (2001) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields. J Fluid Mech 435:25–54

    Google Scholar 

  10. Comer J, Kleinstreuer C, Kim C (2001) Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. J Fluid Mech 435:55–80

    Google Scholar 

  11. Zhang Z, Kleinstreuer C (2002) Transient airflow structures and particle transport in a sequentially branching lung airway model (1994-present). Phys Fluids 14(2):862–880

    Article  CAS  Google Scholar 

  12. Zhang Z, Kleinstreuer C, Kim CS (2002) Aerosol deposition efficiencies and upstream release positions for different inhalation modes in an upper bronchial airway model. Aerosol Sci Technol 36(7):828–844

    Article  CAS  Google Scholar 

  13. Zhang Z, Kleinstreuer C, Kim C (2002) Cyclic micron-size particle inhalation and deposition in a triple bifurcation lung airway model. J Aerosol Sci 33(2):257–281

    Article  CAS  Google Scholar 

  14. Zhang Z, Kleinstreuer C, Kim C (2002) Gas–solid two-phase flow in a triple bifurcation lung airway model. Int J Multiph Flow 28(6):1021–1046

    Article  CAS  Google Scholar 

  15. Zhang Z, Kleinstreuer C (2003) Species heat and mass transfer in a human upper airway model. Int J Heat Mass Transf 46(25):4755–4768

    Article  Google Scholar 

  16. Zhang Z et al (2005) Comparison of micro- and nano-size particle depositions in a human upper airway model. J Aerosol Sci 36:211–233

    Article  CAS  Google Scholar 

  17. Farkas Á, Balásházy I (2008) Quantification of particle deposition in asymmetrical tracheobronchial model geometry. Comput Biol Med 38(4):508–518

    Article  PubMed  Google Scholar 

  18. Lai T et al (2013) Numerical analysis of particle deposition in asymmetrical human upper airways under different inhalation cycles. J Mech Med Biol 13(04):1350068

    Article  Google Scholar 

  19. Segal R et al (2000) Mathematical model of airflow in the lungs of children I: effects of tumor sizes and locations. Comput Math Methods Med 2(3):199–213

    Google Scholar 

  20. Musante C, Martonen T (2001) Computational fluid dynamics in human lungs II. Effects of airway disease. WIT Press, Southampton, pp 147–164

    Google Scholar 

  21. Zhang Z et al (2002) Aerosol transport and deposition in a triple bifurcation bronchial airway model with local tumors. Inhalation Toxicol 14(11):1111–1133

    Article  CAS  Google Scholar 

  22. Kleinstreuer C, Zhang Z (2003) Targeted drug aeroso deposition analysis for a four-generation lung airway model with hemispherical tumors. J Biomech Eng 125(2):197–206

    Article  CAS  PubMed  Google Scholar 

  23. Longest PW, Vinchurkar S, Martonen T (2006) Transport and deposition of respiratory aerosols in models of childhood asthma. J Aerosol Sci 37(10):1234–1257

    Article  CAS  Google Scholar 

  24. Yang X, Liu Y, Luo H (2006) Respiratory flow in obstructed airways. J Biomech 39(15):2743–2751

    Article  CAS  PubMed  Google Scholar 

  25. Luo HY, Liu Y, Yang XL (2007) Particle deposition in obstructed airways. J Biomech 40(14):3096–3104

    Article  CAS  PubMed  Google Scholar 

  26. Farkas A, Balásházy I (2007) Simulation of the effect of local obstructions and blockage on airflow and aerosol deposition in central human airways. J Aerosol Sci 38(8):865–884

    Article  CAS  Google Scholar 

  27. Weibel E (1963) Morphometry of the human lung, Academic Press. , Springer, New York

  28. Oho K, Amemiya R (1980) Practical fiberoptic bronchoscopy. Igaku-Shoin Ltd., Tokyo

    Google Scholar 

  29. Katz I, Davis B, Martonen T (1999) A numerical study of particle motion within the human larynx and trachea. J Aerosol Sci 30(2):173–183

    Article  CAS  Google Scholar 

  30. Tian G et al (2011) Characterization of respiratory drug delivery with enhanced condensational growth using an individual path model of the entire tracheobronchial airways. Ann Biomed Eng 39(3):1136–1153

    Article  PubMed  PubMed Central  Google Scholar 

  31. Longest PW et al (2012) Comparing MDI and DPI aerosol deposition using in vitro experiments and a new stochastic individual path (SIP) model of the conducting airways. Pharm Res 29(6):1670–1688

    Article  CAS  PubMed  Google Scholar 

  32. Morsi S, Alexander A (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55(02):193–208

    Article  Google Scholar 

  33. Zhao Y, Lieber BB (1994) Steady expiratory flow in a model symmetric bifurcation. J Biomech Eng 116(3):318–323

    Article  CAS  PubMed  Google Scholar 

  34. Kim CS, Fisher DM (1999) Deposition characteristics of aerosol particles in sequentially bifurcating airway models. Aerosol Sci Technol 31(2–3):198–220

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahereh B. Gorji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkhadnia, F., Gorji, T.B. & Gorji-Bandpy, M. Airflow, transport and regional deposition of aerosol particles during chronic bronchitis of human central airways. Australas Phys Eng Sci Med 39, 43–58 (2016). https://doi.org/10.1007/s13246-015-0394-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0394-x

Keywords

Navigation