Skip to main content

Advertisement

Log in

Fluid structure interaction (FSI) simulation of the left ventricle (LV) during the early filling wave (E-wave), diastasis and atrial contraction wave (A-wave)

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

In this paper, the hemodynamic characteristics inside a physiologically correct three-dimensional LV model using fluid structure interaction scheme are examined under various heart beat conditions during early filling wave (E-wave), diastasis and atrial contraction wave (A-wave). The time dependent and incompressible viscous fluid, nonlinear viscous fluid and the stress tensor equations are coupled with the full Navier–Stoke’s equations together with the Arbitrary Lagrangian–Eulerian and elasticity in the solid domain are used in the analysis. The results are discussed in terms of the variation in the intraventricular pressure, wall shear stress (WSS) and the fluid flow patterns inside the LV model. Moreover, changes in the magnitude of displacements on the LV are also observed during diastole period. The results obtained demonstrate that the magnitude of the intraventricle pressure is found higher in the basal region of the LV during the beginning of the E-wave and A-wave, whereas the Ip is found much higher in the apical region when the flow propagation is in peak E-wave, peak A-wave and diastasis. The magnitude of the pressure is found to be 5.4E2 Pa during the peak E-wave. Additionally, WSS elevates with the rise in the E-wave and A-wave but the magnitude decreases during the diastasis phase. During the peak E-wave, maximum WSS is found to be 5.7 Pa.  Subsequent developments, merging and shifting of the vortices are observed throughout the filling wave. Formations of clockwise vortices are evident during the peak E-wave and at the onset of the A-wave, but counter clockwise vortices are found at the end of the diastasis and at the beginning of the A-wave. Moreover, the maximum magnitude of the structural displacement is seen in the ventricle apex with the value of 3.7E−5 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kouhi E (2011) An advanced fluid structure interaction study of tri-leaflet aortic heart valve. Swinburne University of Technology, Melbourne

    Google Scholar 

  2. De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT (2000) A two-dimensional fluid–structure interaction model of the aortic value. J Biomech 33(9):1079–1088. doi:10.1016/S0021-9290(00)00068-3

    Article  PubMed  Google Scholar 

  3. Morsi YS, Yang WW, Wong CS, Das S (2007) Transient fluid–structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organs 10(2):96–103. doi:10.1007/s10047-006-0365-9

    Article  PubMed  Google Scholar 

  4. Marom G, Peleg M, Halevi R, Rosenfeld M, Raanani E, Hamdan A, Haj-Ali R (2013) Fluid–structure interaction model of aortic valve with porcine-specific collagen fiber alignment in the cusps. J Biomech Eng 135(10):101001–101006. doi:10.1115/1.4024824

    Article  PubMed  Google Scholar 

  5. Kemp I, Dellimore K, Rodriguez R, Scheffer C, Blaine D, Weich H, Doubell A (2013) Experimental validation of the fluid-structure interaction simulation of a bioprosthetic aortic heart valve. Australas Phys Eng Sci Med 36(3):363–373. doi:10.1007/s13246-013-0213-1

    Article  PubMed  CAS  Google Scholar 

  6. Kouhi E, Morsi Y, Hassan Masood S (2008) Two way FSI analysis of CABG with physiologically realistic pulsatile flow and nonlinear artery structure. J Biomech 41:S245

    Article  Google Scholar 

  7. Morsi Y, Owida A, Do H, Arefin MS, Wang X (2012) Graft-artery junctions: design optimization and CAD development. In: Liebschner MAK (ed) Computer-aided tissue engineering. Methods in molecular biology, vol 868. Humana Press, Totowa, pp 269–287. doi:10.1007/978-1-61779-764-4_16

    Chapter  Google Scholar 

  8. Do HV (2012) Design and optimization of coronary arteries bypass graft using numerical method. Swinburne University of Technology, New York

    Google Scholar 

  9. Freshwater IJMY, Lai T (2006) The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow. Proc Inst Mech Eng H 220(7):743–757

    Article  PubMed  CAS  Google Scholar 

  10. Kouhi E, Morsi Y, Masood SH (2009) The effect of arterial wall deformability on hemodynamics of CABG. pp 485–494

  11. Ong CW, Chan BT, Lim E, Abu Osman NA, Abed AA, Dokos S, Lovell NH (2012) Fluid structure interaction simulation of left ventricular flow dynamics under left ventricular assist device support. In: 34th Annual international conference of the IEEE EMBS, pp. 6293-6296

  12. Zheng X, Seo JH, Vedula V, Abraham T, Mittal R (2012) Computational modeling and analysis of intracardiac flows in simple models of the left ventricle. Eur J Mech 35:31–39. doi:10.1016/j.euromechflu.2012.03.002

    Article  Google Scholar 

  13. Cheng Y, Oertel H, Schenkel T (2005) Fluid–structure coupled CFD simulation of the left ventricular flow during filling phase. Ann Biomed Eng 33:567–576. doi:10.1007/s10439-005-4388-9

    Article  PubMed  Google Scholar 

  14. Tang D, Yang C, Geva T, Nido PJd (2010) Image-based patient-specific ventricle models with fluid–structure interaction for cardiac function assessment and surgical design optimization. Prog Pediatr Cardiol 30(1–2):51–62

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nordsletten D, McCormick M, Kilner PJ, Hunter P, Kay D, Smith NP (2011) Fluid–solid coupling for the investigation of diastolic and systolic human left ventricular function. Int J Numer Methods Biomed Eng 27(7):1017–1039. doi:10.1002/cnm.1405

    Article  Google Scholar 

  16. Hunter PJ, Pullan AJ, Smaill BH (2003) Modeling total heart function. Annu Rev Biomed Eng 5:147–177. doi:10.1146/annurev.bioeng.5.040202.121537

    Article  PubMed  CAS  Google Scholar 

  17. Khalafvand SS, Ng EYK, Zhong L (2011) CFD simulation of flow through heart: a perspective review. Comput Methods Biomech Biomed Eng 14(1):113–132

    Article  CAS  Google Scholar 

  18. Lee B-K (2011) Computational fluid dynamics in cardiovascular disease. Korean Circ J 41(8):423–430

    Article  PubMed  PubMed Central  Google Scholar 

  19. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics. The finite volume method, 2nd edn. Pearson, Harlow

    Google Scholar 

  20. Tu J, Yeoh GH, Liu C (2008) Computational fluid dynamics: a practical approach. Elsevier, Burlington

    Google Scholar 

  21. McQueen DM, Peskin CS (2000) A three-dimensional computer model of the human heart for studying cardiac fluid dynamics. ACM SIGGRAPH Comput Graph 34(1):56–60

    Article  Google Scholar 

  22. Ding J, Liu Y, Wang F, Bai F (2012) Impact of competitive flow on hemodynamics in coronary surgery: numerical study of ITA-LAD model. Comput Math Methods Med 2012:7. doi:10.1155/2012/356187

    Google Scholar 

  23. Reul H, Talukder N, Müller EW (1981) Fluid mechanics of the natural mitral valve. J Biomech 14(5):361–372. doi:10.1016/0021-9290(81)90046-4

    Article  PubMed  CAS  Google Scholar 

  24. Taylor TW, Okino H, Yamaguchi T (1994) Three-dimensional analysis of left ventricular ejection using computational fluid dynamics. J Biomech Eng 116(1):127–130. doi:10.1115/1.2895696

    Article  PubMed  CAS  Google Scholar 

  25. Vierendeels JA, Riemslagh K, Dick E, Verdonck P (1999) Computer simulation of left ventricular filling flow: impact study on echocardiograms. Comput Cardiol 1999(1999):177–180. doi:10.1109/CIC.1999.825935

    Google Scholar 

  26. Lemmon JD, Yoganathan AP (2000) Computational modeling of left heart diastolic function: examination of ventricular dysfunction. J Biomech Eng 122(4):297–303

    Article  PubMed  CAS  Google Scholar 

  27. Verdonck P, Vierendeels J (2002) Fluid–structure interaction modelling of left ventricular filling. In: Sloot PA, Hoekstra A, Tan CJK, Dongarra J (eds) Computational science: ICCS 2002. Lecture notes in computer science, vol 2331. Springer, Berlin, pp 275–284. doi:10.1007/3-540-47789-6_29

  28. Nakamura M, Wada S, Mikami T, Kitabatake A, Karino T (2002) A computational fluid mechanical study on the effects of opening and closing of the mitral orifice on a transmitral flow velocity profile and an early diastolic intraventricular flow. JSME Int J Ser C 45(4):913–922

    Article  Google Scholar 

  29. Ebbers T, Bolger AF, Wranne B, Karlsson M, Wigström L (2002) Noninvasive measurement of time-varying three-dimensional relative pressure fields within the human heart. J Biomech Eng 124(3):288–293. doi:10.1115/1.1468866

    Article  PubMed  CAS  Google Scholar 

  30. Saber N, Wood N, Gosman AD, Merrifield R, Yang G-Z, Charrier C, Gatehouse P, Firmin D (2003) Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics. Ann Biomed Eng 31(1):42–52. doi:10.1114/1.1533073

    Article  PubMed  Google Scholar 

  31. Long Q, Merrifield R, Yang G, Kilner P, Firmin D, Xu X (2003) The influence of inflow boundary conditions on intra left ventricle flow predictions. J Biomech Eng 125(6):922–927

    Article  PubMed  CAS  Google Scholar 

  32. Usyk TP, McCulloch AD (2003) Relationship between regional shortening and asynchronous electrical activation in a three-dimensional model of ventricular electromechanics. J Cardiovasc Electrophysiol 14:S196–S202. doi:10.1046/j.1540.8167.90311.x

    Article  PubMed  Google Scholar 

  33. Kerckhoffs RCP, Faris OP, Bovendeerd PHM, Prinzen FW, Smits K, McVeigh ER, Arts T (2003) Timing of depolarization and contraction in the paced canine left ventricle. J Cardiovasc Electrophysiol 14:S188–S195. doi:10.1046/j.1540.8167.90310.x

    Article  PubMed  Google Scholar 

  34. Kilner PJ, Yang G-Z, Wilkes AJ, Mohiaddin RH, Firmin DN, Yacoub MH (2000) Asymmetric redirection of flow through the heart. Nature 404(6779): 759–761. http://www.nature.com/nature/journal/v404/n6779/suppinfo/404759a0_S1.html

    Google Scholar 

  35. Saber N, Gosman AD, Wood N, Kilner P, Charrier C, Firmin D (2001) Computational flow modeling of the left ventricle based on in vivo MRI data: initial experience. Ann Biomed Eng 29(4):275–283. doi:10.1114/1.1359452

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe H, Sugiura S, Kafuku H, Hisada T (2004) Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. Biophys J 87(3):2074–2085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Domenichini F, Pedrizzetti G, Baccani B (2005) Three-dimensional filling flow into a model left ventricle. J Fluid Mech 539:179–198. doi:10.1017/S0022112005005550

    Article  Google Scholar 

  38. Pedrizzetti G, Domenichini F (2005) Nature optimizes the swirling flow in the human left ventricle. Phys Rev Lett 95(10):108101. doi:10.1103/PhysRevLett.95.108101

    Article  PubMed  Google Scholar 

  39. Lee J, Niederer S, Nordsletten D, Grice IL, Smail B, Kay D, Smith N (2009) Coupling contraction, excitation, ventricular and coronary blood flow across scale and physics in the heart. Philos Trans R Soc A 367(1986):2311–2331. doi:10.1098/rsta.2008.0311

    Article  Google Scholar 

  40. Nordsletten DA, Niederer SA, Nash MP, Hunter PJ, Smith NP (2011) Coupling multi-physics models to cardiac mechanics. Prog Biophys Mol Biol 104(1–3):77–88

    Article  PubMed  CAS  Google Scholar 

  41. Lassila T, Malossi ACI, Stevanella M, Votta E, Redaelli A, Deparis S (2012) Multiscale fluid–structure interaction simulation of patient-specific left ventricle fluid dynamics with fictitious elastic structure regularization. Int J Numer Methods Biomed Eng 00:1–23. doi:10.1002/cnm

    Google Scholar 

  42. Temam R (2001) Navier–Stokes equations: theory and numerical analysis. AMS Chelsea Publishing, Providence

    Google Scholar 

  43. Fluid–Structure Interaction (2013) http://www.ansys.com/Products/Simulation+Technology/Fluid+Dynamics/Fluid+Dynamics+Products/ANSYS+Fluent/Features/Fluid%E2%80%93Structure+Interaction. Accessed 25 Oct 2013

  44. Huerta A, Liu WK (1998) Viscous flow with large free surface motion. Comput Methods Appl Mech Eng 69(3):277–324

    Article  Google Scholar 

  45. Donea J, Huerta A, Ponthot J-P, Rodr′ıguez-Ferran A (2004) Arbitrary Lagrangian–Eulerian methods. Encyclopedia of computational mechanics, vol 1. Wiley, New York

    Google Scholar 

  46. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in 3-D parabolic flows. Int J Heat Mass Transf 15:1787–1806

    Article  Google Scholar 

  47. Bronzino JD (1999) The biomedical engineering handbook, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  48. Bronzino JD (2006) Biomedical engineering fundamentals, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  49. Waite L, Schulz S, Szabo G, Vahl CF (2000) A lumped parameter model of left ventricular filling-pressure waveforms. Biomed Sci Instrum 36:75–80

    PubMed  CAS  Google Scholar 

  50. Courtois M, Kovács SJ Jr, Ludbrook PA (1988) Transmitral pressure–flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation 78(3):661–671. doi:10.1161/01.CIR.78.3.661

    Article  PubMed  CAS  Google Scholar 

  51. Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelisa A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10(2):165–193. doi:10.1093/ejechocard/jep007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. S. Arefin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arefin, M.S., Morsi, Y.S. Fluid structure interaction (FSI) simulation of the left ventricle (LV) during the early filling wave (E-wave), diastasis and atrial contraction wave (A-wave). Australas Phys Eng Sci Med 37, 413–423 (2014). https://doi.org/10.1007/s13246-014-0250-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0250-4

Keywords

Navigation