Skip to main content

Advertisement

Log in

Effect of postural changes on normal and stenosed common carotid artery using FSI

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Gravity associated with postural changes has a strong bearing on haemodynamics of blood flow in arteries. Its effect on stenosed cases has not been widely investigated. In the present study, variation observed in blood flow during postural changes is investigated for different conditions like standing, sleeping and head-down position. A fluid structure interaction study is carried out for idealized normal and 75 % eccentric and concentric stenosed common carotid normal artery. The results clearly indicate the effects of altered gravity on flow conditions. It was found to be very significant during head-down position and demonstrated very high arterial blood pressure in stenosed common carotid when compared with normal carotid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Tang D, Kobayashi S, Zheng J (2003) Effect of stenosis asymmetry on blood flow and artery compression: a three-dimensional fluid structure interaction model. Ann Biomed Eng 31(10):1182–1193

    Article  PubMed  Google Scholar 

  2. Abdul Khader SM, Shenoy BS, Raghuvir Pai B, Mahmood NS, Kamath G, Rao VRK (2011) Effect of increased severity in patient specific stenosis of common carotid artery using CFD-A case study. World J Model Simul 7(2):113–122

    Google Scholar 

  3. Abdul Khader SM, Ayachit A, Raghuvir Pai B, Rao VRK, Kamath SG (2012) FSI simulation of common carotid under normal and high blood pressures, advances in mechanical engineering 2012

  4. Loring BR (1993) Human cardiovascular control. Oxford University Press

  5. Savin E, Bailliart O, Checoury A, Bonnin P, Grossin C, Martineaud JP (1995) Influence of posture on middle cerebral artery mean flow velocity in humans. Eur J Appl Physiol 71(2–3):161–165

    Article  CAS  Google Scholar 

  6. Olufsen MS, Ottesen JT, Tran HT, Ellwein LM (2007) Blood pressure and blood flow variation during postural change from sitting to standing : model development and validation. Appl Physiol 99(4):1523–1537

    Article  Google Scholar 

  7. Janneke G (2005) Postural changes in humans: effects of gravity on the circulation. Ph.D thesis, Cardiovascular Research Institute, Amsterdam

  8. Azhim A, Katai M, Akutagawa M, Hirao Y, Yoshizaki K, Obara S (2006) Measurement of blood flow velocity waveforms in the carotid, brachial and femoral arteries during postural change. Proceeding of international conference on biomedical and pharmaceutical engineering pp 438–442

  9. Peterson K, Ozawa ET, Pantalos GM, Sharp MK (2002) Numerical simulation of the influence of gravity and posture on cardiac performance. Ann Biomed Eng 30(2):247–259

    Article  PubMed  Google Scholar 

  10. Kim CS, Kiris C, Kwak D, David T (2006) Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity. J Biomech Eng 128(2):194–202

    Article  PubMed  Google Scholar 

  11. Alirezaye-Davatgar M (2006) Numerical simulation of blood flow in the systemic vasculature incorporating gravitational force with application to the cerebral circulation. Ph.D thesis, The University of New South Wales

  12. Ferziger J, Peric M (2002) Computational methods for fluid dynamics, Heidelberg, Berlin

  13. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2006) Computer modeling of cardiovascular fluid–structure interactions with the deforming-spatial-domain/stabilized space–time formulation. Comput Methods Appl Mech Eng 195(13–16):1885–1895

    Article  Google Scholar 

  14. ANSYS Release 13.0 Documentation (2011) ANSYS Company, Pittsburgh

  15. Alberto Figueroa C (2006) A coupled-momentum method to model blood flow and vessel deformation in human arteries: applications in disease research and simulation-based medical planning. Ph.D thesis, Stanford University

  16. Ku DN (1997) Blood flow in arteries. Annu Rev Fluid Mech 29(1):399–434

    Article  Google Scholar 

  17. Tang D, Yang C, Huang Y, Ku DN (1999) Wall stress and strain analysis using a three-dimensional thick-wall model with fluid–structure interactions for blood flow in carotid arteries with stenoses. Comput Struct 72:341–356

    Article  Google Scholar 

  18. Moriyama K, Ifuku H (2007) Assessment of cardiac contractility during a cold pressor test by using (dP/dt)/P of carotid artery pulses. Eur J Appl Physiol 100(2):185–191

    Article  PubMed  Google Scholar 

  19. Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2008) Fluid–structure interaction modeling of a patient-specific cerebral aneurysm: influence of structural modeling. Comput Mech 43(1):151–159

    Article  Google Scholar 

  20. Vignon-Clementel IE (2006) A coupled multidomain method for computational modeling of blood flow. Ph.D thesis, Stanford University

  21. Bhaskaran S (2008) Effects of altered gravity on insects, plants and the human cardiovascular system. Ph.D thesis, University of Pune

  22. Deshpande MD, Giddens DP (1976) Steady laminar flow through modeled vascular stenoses. J Biomech 9:165–173

    Article  CAS  PubMed  Google Scholar 

  23. Long Q, Xu XY, Ramnarine KV, Hoskins P (2001) Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J Biomech 34(10):1229–1242

    Article  CAS  PubMed  Google Scholar 

  24. Tezduyar TE, Takizawa K, Moorman C, Christopher J (2009) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46(1):17–29

    Article  Google Scholar 

  25. Ai L, Zhang L, Dai W, Hu C, Shung KK, Hsiai TK (2010) Real-time assessment of flow reversal in an eccentric arterial stenotic model. J Biomech 43(14):2678–2683

    Article  PubMed Central  PubMed  Google Scholar 

  26. Lee KW, Xu XY (2002) Modelling of flow and wall behaviour in a mildly stenosed tube. Med Eng Phys 24(9):575–586

    Article  CAS  PubMed  Google Scholar 

  27. Fung Y (1984) Biodynamics-circulation. Springer, New York

    Google Scholar 

  28. Rayz VL, Boussel L, Lawton MT, Acevedo-Bolton G, Ge L, Young WL, Higashida RT, Saloner D (2008) Numerical modeling of the flow in intracranial aneurysms: prediction of regions prone to thrombus formation. Ann Biomed Eng 36(11):1793–1804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Varghese SS, Steven HF (2003) Numerical modeling of pulsatile turbulent flow in stenotic vessels. J Biomech Eng 125(4):445–460

    Article  PubMed  Google Scholar 

  30. Valencia A, Villanueva M (2006) Unsteady flow and mass transfer in models of stenotic arteries considering fluid-structure interaction. Int Commun Heat Mass Transf 33(8):966–975

    Article  Google Scholar 

  31. Tambasco M (2002) Lagrangian hemodynamics of the stenosed carotid bifurcation. Ph.D thesis, The University of Western Ontario

  32. Feng R, Xenos M, Girdhar G, Kang W, Davenport JW, Deng Y, Bluestein D (2012) Viscous flow simulation in a stenosis model using discrete particle dynamics: a comparison between DPD and CFD. Biomech Model Mechanobiol 11(1–2):119–129

    Article  PubMed  Google Scholar 

  33. Li MX, Beech-Brandt JJ, John LR, Hoskins PR (2007) Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J Biomech 40(16):3715–3724

    Article  CAS  PubMed  Google Scholar 

  34. Salsac AV, Sparks SR, Lasheras JC (2004) Hemodynamic changes occurring during the progressive enlargement of abdominal aortic aneurysm. Ann Vasc Surg 18(1):14–21

    Article  PubMed  Google Scholar 

  35. Brook BS, Falle SAEG, Pedley TJ (1999) Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state. J Fluid Mech 396:223–256

    Article  CAS  Google Scholar 

  36. Jung H, Choi JW, Park CG (2004) Asymmetric flows of non-newtonian fluids in symmetric stenosed artery. Rheology 16(2):101–108

    Google Scholar 

  37. Pontrelli G (2001) Blood flow through an axisymmetric stenosis. Proc Inst Mech Eng [H] 215(1):1–10

    Article  CAS  Google Scholar 

  38. Li ZY, Taviani V, Tang T, Sadat U, Young V, Patterson GM, Gillard JH (2009) The mechanical triggers of plaque rupture: shear stress versus pressure gradient. British J Radiol 82:S39–S45

    Article  Google Scholar 

  39. Molla M (2009) LES of pulsatile flow in the models of arterial stenosis and aneurysm. Ph.D thesis, University of Glasgow

  40. Tang D, Yang C, Kobayashi S, Ku DN (2001) Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid–wall interactions. J Biomech Eng 123(6):548–557

    Article  CAS  PubMed  Google Scholar 

  41. Gao H (2010) Carotid plaque stress analysis by fluid structure interaction based in in-vivo mri: implications to plaque vulnerability assessment. Ph.D thesis, Brunel University

  42. Salzar RS, Thubrikar MJ, Eppink RT (1995) Pressure-induced mechanical stress in the carotid artery bifurcation: a possible correlation to atherosclerosis. J Biomech 28(11):1333–1340

    Article  CAS  PubMed  Google Scholar 

  43. Zhao SZ, Xu XY, Hughes AD, Thom SA, Stanton AV (2000) Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J Biomech 33(8):975–984

    Article  CAS  PubMed  Google Scholar 

  44. Perktold K, Rappitsch G (1995) Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J Biomech 28(7):845–856

    Article  CAS  PubMed  Google Scholar 

  45. Younis HF, Kaazempur-Mofrad MR, Chan RC, Isasi AG (2004) Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Biomech Model Mechanobiol 3(1):17–32

    Article  CAS  PubMed  Google Scholar 

  46. Castellano V, Olive JL, Stoner L, Black C, Mccully KK (2004) Blood flow response to a postural challenge in older men and women. Dyn Med 3:1–8

    Article  PubMed Central  PubMed  Google Scholar 

  47. Lee SE, Lee SW, Fischer PF, Bassiouny HS, Loth F (2008) Direct numerical simulation of transitional flow in a stenosed carotid bifurcation. J Biomech 41(11):2551–2561

    Article  PubMed Central  PubMed  Google Scholar 

  48. Aaslid R, Lindegaard KF, Sorteberg W, Nornes H (1989) Cerebral autoregulation dynamics in humans. Stroke 20:45–52

    Article  CAS  PubMed  Google Scholar 

  49. Greene NH, Lee LA (2012) Advances in anesthesia modern and evolving understanding of cerebral perfusion and autoregulation. Adv Anesthesia 30(1):97–129

    Article  Google Scholar 

  50. Krause N, Lynch JW, Kaplan GA, Cohen RD, Salonen R, Kaplan A, Cohen D, Lynch W (2000) Standing at work and progression of carotid atherosclerosis. Scand J Work Environ Health 26(3):227–236

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Abdul Khader.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raghuvir Pai, B., Ayachit, A., Abdul Khader, S.M. et al. Effect of postural changes on normal and stenosed common carotid artery using FSI. Australas Phys Eng Sci Med 37, 139–152 (2014). https://doi.org/10.1007/s13246-014-0246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-014-0246-0

Keywords

Navigation