Skip to main content
Log in

Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Normoxic type polyacrylamide gel (nPAG) dosimeters are established for dose quantification in three-dimensions for radiotherapy and hence represent an adequate dosimeter for quantification of the dose variation due to the existence of the gold nanoparticles (AuNPs) in the target during irradiation. This work compared the degree of polymerisation in gel doped with nanoparticles (nPAG–AuNP) with control gel samples when irradiated by various sources. Samples were irradiated with a synchrotron radiation source of mean energy 125 keV, 80 kV X-ray beams from superficial therapy machine (SXRT), 6 MV X-rays and 6 MeV electron beams from linear accelerator. Analysis of the dose–response relation was used to determine a dose enhancement factor (DEF) of 1.76 ± 0.34 and 1.64 ± 0.44 obtained for samples irradiated with kilovoltage X-rays energy from synchrotron source and SXRT respectively. Similarly, including AuNPs in gel results in a DEF of approximately 1.37 ± 0.35 when irradiated by an electron beam and 1.14 ± 0.28 for high energy X-ray beams. The results demonstrate the use of AuNPs embedded in polymer gels for measuring the enhancement of radiation caused by metallic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burnet NG, Wurm R, Nyman J, Peacock JH (1996) Normal tissue radiosensitivity—How important is it? Clin Oncol 8:25–34

    Article  CAS  Google Scholar 

  2. Barth RF, Soloway AH, Fairchild RG (1990) Boron neutron capture therapy of cancer. Cancer Res 50:1061–1070

    PubMed  CAS  Google Scholar 

  3. Adhikari JS, Khaitan D, Arya MB, Dwarakanath BS (2005) Heterogeneity in the radiosensitizing effects of the DNA ligand Hoechst-33342 in human tumor cell lines. J Can Res Ther 1:151–161

    Article  CAS  Google Scholar 

  4. Dawson P, Penhaligon M, Smith E, Saunders J (1987) Iodinated contrast agents as “radiosensitisers” Br J Radiol 60:201–203

    Google Scholar 

  5. Santos-Mello R, Callisen H, Winter J, Kagan AR, Norman A (1982) Radiation dose enhancement in tumors with iodine. Med Phys 10:75–78

    Article  Google Scholar 

  6. Solberg TD, Iwamoto KS, Norman A (1992) Calculation of radiation dose enhancement factors for dose enhancement therapy of brain tumours. Phys Med Biol 37:439–443

    Article  PubMed  CAS  Google Scholar 

  7. Meesat R, Jean-Paul JG, Khalil A, Lepage M (2009) Evaluation of the dose enhancement of iodinated compounds by polyacrylamide gel dosimetry. Phys Med Biol 54:5909–5917

    Article  PubMed  CAS  Google Scholar 

  8. Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49:N309–N315

    Article  PubMed  CAS  Google Scholar 

  9. Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD (2005) Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 1:325–327

    Article  PubMed  CAS  Google Scholar 

  10. Chang MY, Shiau AL, Chen YH, Chang CJ, Chen HHW, Wu CL (2008) Increased apoptotic potential and dose enhancing effect of gold nanoparticles in combination with single dose clinical electron beams on tumor bearing mice. Cancer Sci 99:1479–1484

    Article  PubMed  CAS  Google Scholar 

  11. Zhang X, Xing JZ, Chen J, Ko L, Amanie J, Gulavita S, Pervez N, Yee D, Moore R, Roa W (2008) Enhanced radiation sensitivity in prostate cancer by gold nanoparticles. Clin Invest Med 31:E160–E167

    PubMed  CAS  Google Scholar 

  12. Kong T, Zeng J, Wang X, Yang X, Yang J, McQuarrie S, McEwan A, Roa W, Chen J, Xing JZ (2008) Enhancement of radiation cytotoxicity in breast cancer cells by localized attachment of gold nanoparticles. Small 4:1537–1543

    Article  PubMed  CAS  Google Scholar 

  13. Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM (2008) Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol 60:977–985

    Article  PubMed  CAS  Google Scholar 

  14. Liu CJ, Wang CH, Chien CC, Yang TY, Chen ST, Leng WH, Lee CF, Lee KH, Hwu Y, Lee YC, Cheng CL, Yang CS, Chen YJ, Je JH, Margaritondo G (2008) Enhanced X-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnology 19:295104

    Article  PubMed  Google Scholar 

  15. Rahman WN, Bishara N, Ackerly T, He C, Jackson P, Wong C, Davidson R, Geso M (2009) Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine: Nanotechnology. Biol Med 5:136–142

    CAS  Google Scholar 

  16. Cho SH (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50:N163–N173

    Article  PubMed  Google Scholar 

  17. McMahon SJ, Mendenhall MH, Jain S, Currell F (2008) Radiotherapy in the presence of contrast agents: a general figure of merit and its application to gold nanoparticles. Phys Med Biol 53:5635–5651

    Article  PubMed  Google Scholar 

  18. Cho SH, Jones BL, Krishnan S (2009) The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/X-ray sources. Phys Med Biol 54:4889–4905

    Article  PubMed  CAS  Google Scholar 

  19. Roeske JC, Nunez L, Hoggarth M, Labay E, Weichselbaum RR (2007) Characterization of the theoretical radiation dose enhancement from nanoparticles. Technol Cancer Res Treat 6:395–401

    PubMed  Google Scholar 

  20. Garnica-Garza HM (2009) Contrast-enhanced radiotherapy: feasibility and characteristics of the physical absorbed dose distribution for deep-seated tumors. Phys Med Biol 54:5411–5425

    Article  PubMed  CAS  Google Scholar 

  21. Morris KN, Weil MD, Malzbender R (2006) Radiochromic film dosimetry of contrast-enhanced radiotherapy (CERT). Phys Med Biol 51:5915–5925

    Article  PubMed  Google Scholar 

  22. Ohuchi H (2007) High sensitivity radiochromic film dosimetry using an optical common-mode rejection and a reflective mode flatbed color scanner. Med Phys 34:4207–4212

    Article  PubMed  CAS  Google Scholar 

  23. Baldock C, DeDeene Y, Doran S, Ibbott G, Jirasek A, Lepage M, McAuley KB, Oldham M, Schreiner LJ (2010) Polymer gel dosimetry. Phys Med Biol 55:R1–R63

    Article  PubMed  CAS  Google Scholar 

  24. Maryanski MJ, Schulz RJ, Ibbott GS, Gatenby JC, Xie J, Horton D, Gore JC (1994) Magnetic resonance imaging of radiation dose distributions using a polymer-gel dosimeter. Phys Med Biol 39:1437–1455

    Article  PubMed  CAS  Google Scholar 

  25. Brown S, Venning A, De Deene Y (2008) Radiological properties of the PRESAGE and PAGAT polymer dosimeters. Appl Radiat Isot 66:1970–1974

    Article  PubMed  CAS  Google Scholar 

  26. Boudou C, Tropres I, Esteve F, Elleaume H (2006) Preliminary study of a normoxic polyacrylamide gel doped with iodine. J Phys Conf Ser 56:145–148

    Article  CAS  Google Scholar 

  27. Boudou C, Tropres I, Rousseau J, Lamalle L, Adam JF, Esteve F, Elleaume H (2007) Polymer gel dosimetry for synchrotron stereotactic radiotherapy and iodine dose-enhancement measurement. Phys Med Biol 52:4881–4892

    Article  PubMed  CAS  Google Scholar 

  28. Gastaldo J, Boudou C, Lamalle L, Tropres I, Corde S, Sollier A, Rucka G, Elleaume H (2008) Normoxic polyacrylamide gel doped with iodine: response versus X-ray energy. Eur J Radiol 68S:S118–S120

    Article  Google Scholar 

  29. Herold DM, Das IJ, Stobbe CC, Iyer RV, Chapman JD (2000) Gold microsphere: a selective technique for producing biologically effective dose enhancement. Int J Radiat Biol 76:1357–1364

    Article  PubMed  CAS  Google Scholar 

  30. Corde S, Adam JF, Biston MC, Joubert A, Charvet AM, Esteve F, Le Bas JF, Elleaume H, Balosso J (2005) Sensitivity variation of doped Fricke gel irradiated with monochromatic synchrotron X-rays between 33.5 and 80 keV. Radiat Prot Dosim 117:425–431

    Article  Google Scholar 

  31. Marques T, Schwarcke M, Garrido C, Zucolotto V, Baffa O, Nicolucci P (2010) Gel dosimetry analysis of gold nanoparticle application in kilovoltage radiation therapy. IC3D Dose: The 6th International Conference on 3D Radiation Dosimetry. J Phys Conf Ser 250:012084

  32. Wong CJ, Ackerly T, He C, Patterson W, Powell CE, Qiao G, Solomon DH, Meder R, Geso M (2009) Small field size dose-profile measurements using gel dosimeters, gafchromic films and micro-thermoluminescent dosimeters. Radiat Meas 44:249–256

    Article  CAS  Google Scholar 

  33. McJury M, Oldham M, Cosgrove VP, Murphy PS, Doran S, Leach MO, Webb S (2000) Radiation dosimetry using polymer gels: methods and applications. Brit J Radiol 73:919–929

    PubMed  CAS  Google Scholar 

  34. De Deene Y, Hurley C, Venning A, Vergote K, Mather M, Healy BJ, Baldock C (2002) A basic study of some normoxic polymer gel dosimeters. Phys Med Biol 47:3441–3463

    Article  PubMed  Google Scholar 

  35. Ohno Y, Torikoshi M, Suzuki M, Umetani K, Imai Y, Uesugi K, Yagi N (2008) Dose distribution of a 125 keV mean energy microplanar X-ray beam for basic studies on microbeam radiotherapy. Med Phys 35:3252–3258

    Article  PubMed  Google Scholar 

  36. Torikoshi M, Ohno Y, Yagi N, Umetani K, Furusawa Y (2008) Dosimetry for a microbeam array generated by synchrotron radiation at SPring-8. Eur J Radiol 68:S114–S117

    Article  PubMed  Google Scholar 

  37. Geso M, Ackerly T, Brown S, Chua Z, He C, Wong CJ (2008) Determination of dosimetric perturbations caused by aneurysm clip in stereotactic radiosurgery using gel phantoms and EBT-Gafchromic films. Med Phys 35:744–752

    Article  PubMed  CAS  Google Scholar 

  38. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olson K (1998) XCOM: photon cross sections NIST standard reference database 8 (XGAM)

  39. Chithrani BD, Ghazani AA, Chan WCW (2006) Determining the size and shape dependence of gold nanoparticles uptake into mammalian cells. Nano Lett 6:662–668

    Article  Google Scholar 

  40. Doran SJ, Brochard T, Adamovics J, Krstajic N, Brauer-Krisch E (2010) An investigation of the potential of optical computed tomography for imaging of synchrotron-generated X-rays at high spatial resolution. Phys Med Biol 55:1531–1547

    Article  PubMed  Google Scholar 

  41. Abdul Rahman AT, Brauer-Krisch E, Brochard T, Adamovics J, Clowes SK, Bradley D, Doran SJ (2011) Sophisticated test objects for the quality assurance of optical computed tomography scanners. Phys Med Biol 56:4177–4199

    Article  PubMed  CAS  Google Scholar 

  42. Serduc R, Bouchet A, Brauer-Krisch E, Laissue JA, Spiga J, Sarun S, Bravin A, Fonta C, Renaud L, Boutonnat J, Siegbahn EA, Esteve F, Le Duc G (2009) Synchrotron microbeam radiation therapy for rat brain tumor palliation-influence of the microbeam width at constant valley dose. Phys Med Biol 54:6711–6724

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Authors would like to acknowledge the support and beam-time allocations by SPring-8 synchrotron facility, Japan and William Buckland Radiotherapy Centre, The Alfred Hospital, Melbourne, Australia for making available the superficial X-ray machine and electron accelerator for this study. Thanks to Dr. Pradip Deb for his assistance during the experiments. Funding for travelling was provided by the Australia Nuclear Science and Technology Organization (ANSTO) under the program of “Access to major research facilities programme-09”.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Nordiana Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, W.N., Wong, C.J., Ackerly, T. et al. Polymer gels impregnated with gold nanoparticles implemented for measurements of radiation dose enhancement in synchrotron and conventional radiotherapy type beams. Australas Phys Eng Sci Med 35, 301–309 (2012). https://doi.org/10.1007/s13246-012-0157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0157-x

Keywords

Navigation