Skip to main content
Log in

A robotic catheter system with real-time force feedback and monitor

  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

This paper presents a robotic catheter system with force sensors, monitor and a master–slave remote control system. We developed micro force sensors and applied them in the system to guarantee the operation safety in intravascular neurosurgery applications, and employed a camera to monitor the operation. Two kinds of force information are obtained through force sensors when the catheter contacted the blood vessel. The experiment shows that the proposed force sensors-based catheter system works well through force feedback and remote control. The system can facilitates the operation and avoid potential damages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kanagaratnam P, Koa-Wing M, Wallace DT, Goldenberg AS, Peters NS, Wyn Davies D (2008) Experience of robotic catheter ablation in humans using a novel remotely steerable catheter sheath. J Interv Card Electrophysiol 21:19–26

    Article  PubMed  Google Scholar 

  2. Chun JK, Ernst S, Matthews S, Schmidt B, Bansch D, Boczor S et al (2007) Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory. Eur Heart J 28(2):190–195

    Article  PubMed  Google Scholar 

  3. Pappone C, Vicedomini G, Manguso F, Gugliotta F, Mazzone P, Gulletta S, Sora N, Sala S, Marzi A, Augello G, Livolsi L, Santagostino A, Santinelli V (2006) Robotic magnetic navigation for atrial fibrillation ablation. J Am Coll Cardiol 47:1390–1400

    Article  PubMed  Google Scholar 

  4. http://catheterrobotics.com/CRUS-main.htm

  5. http://www.magnetecs.com/

  6. http://www.stereotaxis.com/niobe.html

  7. Thakui Y, Bax JS, Holdsworth DW, Drangova M (2009) Design and performance evaluation of a remote catheter navigation system. IEEE Trans Biomed Eng 56(7):1901–1908

    Article  Google Scholar 

  8. Arai F, Fuji R, Fukuda T (2002) New catheter driving method using linear stepping mechanism for intravascular neurosurgery. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, vol 3. pp 2944–2949

  9. Willems S, Steven D, Servatius H, Hoffmann BA, Drewitz I, Mullerleile K, Aydin MA, Wegscheider K, Salukhe TV, Meinertz T, Rostock T (2010) Persistence of pulmonary vein isolation after robotic remote-navigated ablation for atrial fibrillation and its relation to clinical outcome. J Interv Card Electrophysiol 21:1079–1084

    Google Scholar 

  10. Saliba W, Reddy VY, Wazni O, Cummings JE et al (2008) Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J Am Coll Cardiol 51:2407–2411

    Article  PubMed  Google Scholar 

  11. Ikeda S, Arai F, Fukuda T, Negoro M, Irie K, Takahashi I et al (2005) In vitro patient-tailored anatomaical model of cerebral artery for evaluating medical robots and systems for intravascular neurosurgery. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. pp 1558–1563

  12. Arai F, Fujimura R, Fukuda T, Negoro M (2002) New catheter driving method using linear stepping mechanism for intravascular neurosurgery. Proceedings of the 2002 IEEE International Conference on Robotics and Automation. pp 2944–2949

  13. Tercero C, Ikeda S, Uchiyama T et al (2007) Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery. Int J Med Robotics Comput Assist Surg 3(1):52–58

    Article  CAS  Google Scholar 

  14. Ramcharitar S, Patterson MS, Geuns RJ et al (2008) Technology insight: magnetic navigation in coronary interventions. Nat Clin Pract Cardiovasc Med 5:148–156

    Article  PubMed  Google Scholar 

  15. Fu Y, Liu H, Wang S et al (2009) Skeleton based active catheter navigation. Int J Med Robotics Comput Assist Surg 5(2):125–135

    Article  Google Scholar 

  16. Guo J, Xiao N, Guo S, Tamiya T (2010) Development of a force information monitoring method for a novel catheter operating system. Inf Int Interdiscip J 13(6):1999–2009

    Google Scholar 

  17. Fabrizio MD, Lee BR, Chan DY, Stoianovici D, Jarrett TW, Yang C, Kavoussi LR (2000) Effect of time delay on surgical performance during telesurgical manipulation. J Endourol 14:133–138

    Article  PubMed  CAS  Google Scholar 

  18. Wang J, Guo S, Kondo H, Guo J, Tamiya T (2008) A novel catheter operating system with force feedback for medical applications. Int J Inf Acquis 5:83–91

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by Kagawa University Characteristic Prior Research fund 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, N., Guo, J., Guo, S. et al. A robotic catheter system with real-time force feedback and monitor. Australas Phys Eng Sci Med 35, 283–289 (2012). https://doi.org/10.1007/s13246-012-0146-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0146-0

Keywords

Navigation