Skip to main content
Log in

A Valveless Pulsatile Pump for the Treatment of Heart Failure with Preserved Ejection Fraction: A Simulation Study

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

Effective treatment of patients with terminal heart failure and preserved ejection fraction (HFpEF) is an unmet medical need. The aim of this study was to investigate a novel valveless pulsatile pump as a therapeutic option for the HFpEF population through comprehensive in silico investigations.

Methods

The pump was simulated in a numerical model of the cardiovascular system of four HFpEF phenotypes and compared to a typical case of heart failure with reduced ejection fraction (HFrEF). The proposed pump, which was modeled as being directly connected to the left ventricle, features a single valveless inlet and outlet cannula and is driven in co-pulsation with the left ventricle. We collected hemodynamics for two different pump volumes (30 and 60 mL).

Results

In all HFpEF conditions, the 30 mL pump improved the cardiac output by approximately 1 L/min, increased the mean arterial pressure by > 11% and lowered the mean left atrial pressure by > 30%. With the larger (60 mL) stroke volume, these hemodynamic improvements were more pronounced. In the HFrEF condition however, these effects were three times less in magnitude.

Conclusions

In this simulation study, the valveless pulsatile device improves hemodynamics in HFpEF patients by increasing the total stroke volume. The hemodynamic benefits are achieved with a small device volume comparable to implantable rotary blood pumps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Agostoni, P., C. Vignati, P. Gentile, et al. Reference values for peak exercise cardiac output in healthy individuals. Chest. 151:1329–1337, 2017.

    Article  Google Scholar 

  2. Birschmann, I., M. Dittrich, T. Eller, et al. Ambient hemolysis and activation of coagulation is different between HeartMate II and HeartWare left ventricular assist devices. J. Heart Lung Transpl. 33:80–87, 2014.

    Article  Google Scholar 

  3. Borlaug, B. A. Heart failure with preserved ejection fraction. In: Management of heart failure2nd, Vol. 1, edited by R. Baliga, and G. Haas. New York: Springer, 2010, pp. 216–219.

    Google Scholar 

  4. Burkhoff, D., M. S. Maurer, S. M. Joseph, et al. Left atrial decompression pump for severe heart failure with preserved ejection fraction: theoretical and clinical considerations. JACC Heart Fail. 3:275–282, 2015.

    Article  Google Scholar 

  5. Cecere, R., R. D. Dowling, and N. Giannetti. Initial clinical experience with the symphony heart assist system. Ann. Thorac. Surg. 99:298–301, 2015.

    Article  Google Scholar 

  6. Colacino, F. M., F. Moscato, F. Piedimonte, et al. Left ventricle load impedance control by apical VAD can help heart recovery and patient perfusion: a numerical study. ASAIO J. 53:263–277, 2007.

    Article  Google Scholar 

  7. Crow, S., C. Milano, L. Joyce, et al. Comparative analysis of von willebrand factor profiles in pulsatile and continuous left ventricular assist device recipients. ASAIO J. 56:441–445, 2010.

    Article  Google Scholar 

  8. Diaphragm Gas Pumps—KNF. https://www.knf.com/products/oem-pumps/product/categories/diaphragm-gas-pumps/micro-pumps/. Accessed 30 Nov 2018.

  9. Fresiello, L., B. Meyns, A. Di Molfetta, and G. Ferrari. A model of the cardiorespiratory response to aerobic exercise in healthy and heart failure conditions. Front. Physiol. 7:189, 2016.

    Article  Google Scholar 

  10. Giridharan, G. A., C. Lederer, A. Berthe, et al. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med. Eng. Phys. 33:1193–1202, 2011.

    Article  Google Scholar 

  11. Gupta, S., K. Woldendorp, K. Muthiah, et al. Normalisation of haemodynamics in patients with end-stage heart failure with continuous-flow left ventricular assist device therapy. Heart Lung Circ. 23:963–969, 2014.

    Article  Google Scholar 

  12. Haberl, T., J. Riebandt, S. Mahr, et al. Viennese approach to minimize the invasiveness of ventricular assist device implantation. Eur. J. Cardio-thorac. Surg. 46:991–996, 2014.

    Article  Google Scholar 

  13. Hetzer, R., F. Kaufmann, and E. M. D. Walter. Paediatric mechanical circulatory support with berlin heart EXCOR: development and outcome of a 23-year experience. Eur. J. Cardio-thorac. Surg. 50:203–210, 2016.

    Article  Google Scholar 

  14. Kasner, M., D. Sinning, J. Lober, et al. Heterogeneous responses of systolic and diastolic left ventricular function to exercise in patients with heart failure and preserved ejection fraction. ESC Heart Fail. 2:121–132, 2015.

    Article  Google Scholar 

  15. Katz, D. H., L. Beussink, A. J. Sauer, et al. Prevalence, clinical characteristics, and outcomes associated with eccentric versus concentric left ventricular hypertrophy in heart failure with preserved ejection fraction. Am. J. Cardiol. 112:1158–1164, 2013.

    Article  Google Scholar 

  16. Kirklin, J. K., F. D. Pagani, R. L. Kormos, et al. Eighth annual INTERMACS report: special focus on framing the impact of adverse events. J. Heart Lung Transpl. 36:1080–1086, 2017.

    Article  Google Scholar 

  17. Klotz, S., M. L. Dickstein, and D. Burkhoff. A computational method of prediction of the end-diastolic pressure-volume relationship by single beat. Nat. Protoc. 2:2152–2158, 2007.

    Article  Google Scholar 

  18. Krabatsch, T., I. Netuka, J. D. Schmitto, et al. Heartmate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure-1 year results from the Ce mark trial. J. Cardiothorac. Surg. 12:23, 2017.

    Article  Google Scholar 

  19. Landesberg, A., E. Konyukhov, R. Shofti, et al. Augmentation of dilated failing left ventricular stroke work by a physiological cardiac assist device. Ann. N. Y. Acad. Sci. 1015:379–390, 2004.

    Article  Google Scholar 

  20. Landesberg, A., A. Shenhav, R. Shofty, et al. Effects of synchronized cardiac assist device on cardiac energetics. Ann. N. Y. Acad. Sci. 1080:466–478, 2006.

    Article  Google Scholar 

  21. Li, J., P. M. Becher, S. Blankenberg, and D. Westermann. Current treatment of heart failure with preserved ejection fraction: should we add life to the remaining years or add years to the remaining life? Cardiol. Res. Pract. 1:1–9, 2013.

    Article  Google Scholar 

  22. Loor, G., and G. Gonzalez-Stawinski. Pulsatile vs. continuous flow in ventricular assist device therapy. Best Pract. Res. Clin. Anaesthesiol. 26:105–115, 2012.

    Article  Google Scholar 

  23. Lund, L. H., J. Matthews, and K. Aaronson. Patient selection for left ventricular assist devices. Eur. J. Heart Fail. 12:434–443, 2010.

    Article  Google Scholar 

  24. Magder, S. Volume and its relationship to cardiac output and venous return. Crit. Care. 20:271, 2016.

    Article  Google Scholar 

  25. Moscato, F., C. Wirrmann, M. Granegger, et al. Use of continuous flow ventricular assist devices in patients with heart failure and a normal ejection fraction: a computer-simulation study. J. Thorac. Cardiovasc. Surg. 145:1352–1358, 2013.

    Article  Google Scholar 

  26. Muthiah, K., J. Phan, D. Robson, et al. Centrifugal continuous-flow left ventricular assist device in patients with hypertrophic cardiomyopathy. ASAIO J. 59:183–187, 2013.

    Article  Google Scholar 

  27. Penicka, M., J. Bartunek, H. Trakalova, et al. Heart failure with preserved ejection fraction in outpatients with unexplained dyspnea. A pressure-volume loop analysis. J. Am. Coll. Cardiol. 55:1701–1710, 2010.

    Article  Google Scholar 

  28. Rogers, J. G., F. D. Pagani, A. J. Tatooles, et al. Intrapericardial left ventricular assist device for advanced heart failure. N. Engl. J. Med. 376:451–460, 2017.

    Article  Google Scholar 

  29. Shah, A. M., B. Claggett, N. K. Sweitzer, et al. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation 132:402–414, 2015.

    Article  Google Scholar 

  30. Sharma, K., and D. A. Kass. Heart failure with preserved ejection fraction: mechanisms, clinical features, and therapies. Circ. Res. 115:79–96, 2014.

    Article  Google Scholar 

  31. Slaughter, M. S., J. G. Rogers, C. A. Milano, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N. Engl. J. Med. 361:2241–2251, 2009.

    Article  Google Scholar 

  32. Slaughter, M. S., M. A. Sobieski, J. D. Graham, et al. Platelet activation in heart failure patients supported by the heartmate ii ventricular assist device. Int. J. Artif. Organs 34:461–468, 2011.

    Article  Google Scholar 

  33. Topilsky, Y., N. L. Pereira, D. K. Shah, et al. Left ventricular assist device therapy in patients with restrictive and hypertrophic cardiomyopathy. Circ. Heart Fail. 4:266–275, 2011.

    Article  Google Scholar 

  34. Uriel, N., P. C. Colombo, J. C. Cleveland, et al. Hemocompatibility-related outcomes in the MOMENTUM 3 trial at 6 months: a randomized controlled study of a fully magnetically levitated pump in advanced heart failure. Circulation 135:2003–2012, 2017.

    Article  Google Scholar 

  35. Ursino, M. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Physiol. 275:H1733–H1747, 1998.

    Google Scholar 

  36. Westerhof, N., J. W. Lankhaar, and B. E. Westerhof. The arterial windkessel. Med. Biol. Eng. Comput. 47:131–141, 2009.

    Article  Google Scholar 

  37. Wolsk, E., R. Bakkestrøm, J. H. Thomsen, et al. The influence of age on hemodynamic parameters during rest and exercise in healthy individuals. JACC Heart Fail. 5:337–346, 2017.

    Article  Google Scholar 

  38. Zile, M. R., C. F. Baicu, and W. H. Gaasch. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N. Engl. J. Med. 19:1953–1959, 2004.

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the Zurich Heart project under the umbrella of “University Medicine Zurich”.

Funding

This study was funded by the UZH Foundation.

Conflict of interest

Marcus Granegger, Hitendu Dave, Walter Knirsch, Bente Thamsen, Martin Schweiger and Michael Hübler declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Granegger.

Additional information

Associate Editors Dr. Ajit P. Yoganathan and Dr. Ulrich Steinseifer oversaw the review of this article.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Granegger, M., Dave, H., Knirsch, W. et al. A Valveless Pulsatile Pump for the Treatment of Heart Failure with Preserved Ejection Fraction: A Simulation Study. Cardiovasc Eng Tech 10, 69–79 (2019). https://doi.org/10.1007/s13239-018-00398-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-00398-8

Keywords

Navigation