Skip to main content

Advertisement

Log in

Multi-omics strategies and prospects to enhance seed quality and nutritional traits in pigeonpea

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Food and nutritional security are an essential goals for the entire global population during climate change scenarios. These twin challenges can be addressed by expanding the global cropping system by promoting grain and legume crops, especially pulses in India. Legume seeds are known as “meat for vegetarian diets”. Ever-increasing pigeonpea consumption as a major source of protein necessitates the improvement of varieties for more efficient production. Pigeonpea is an important legume crop with high protein content and nutritional attributes for more than a billion people living in South Asia. This hardy legume has a considerable potential positive impact on the lives of poor farmers as compared to other legumes, due to better productivity under extreme environmental conditions such as heat, drought and low soil fertility. However, pigeonpea productivity is still low for decades because of sparse utilization of landraces and wild pigeonpea germplasm as genetic and genomic resources. Recent advances in next-generation sequencing, together with other “omics” technologies have significantly reinforced pigeonpea research. Despite the remarkable progress in these technologies, the analysis and mining of existing seed genomics data are still challenging due to the complexity of genetic inheritance, metabolic partitioning, and developmental regulations. The integration of “omics tools” is an effective strategy to discover critical regulators of various seed traits. To utilize its potential, a coordinated and comprehensive evaluation of germplasm is required. Identification of potential genes/alleles governing complex traits of seed quality and nutritional content such as seed weight, seed size, seed color, total protein content, amino acid, antioxidant, resistant starch and disease resistance are essential in genomic selection for quality trait improvement of pigeonpea. Therefore, we need to understand these complex genetic architectures of qualitative and quantitative traits in pigeonpea for the development of nutrient-dense varieties for value addition. It helps in reducing malnutrition, protein, energy, and amino acid deficiency in food and feed related problems that are common in the majority of the population and more specific to developing countries. In this review, a comprehensive discussion on recent advances in “omics” approaches, their use in pigeonpea seed quality, and nutritional trait investigations are presented along with the available databases and technological platforms and their applicability in the improvement of pigeonpea. This article highlights the catalog of important available resources to improve the knowledge base and its future utilization in pigeonpea crop improvement programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ajayi OB, Oyetayo FL. Potentials of Kerstingiella geocarpa as a health food. J Med Food. 2009;12:184–7.

    Article  CAS  Google Scholar 

  2. Agrawal GK, Timperio AM, Zolla L, Bansal V, Shukla R, Rakwal R. Biomarker discovery and applications for foods and beverages: proteomics to nanoproteomics. J Proteomics. 2013;93:74–92.

    Article  CAS  Google Scholar 

  3. Arora S, Mahato AK, Singh S, Mandal P, Bhutani S, Dutta S, et al. A high-density intraspecific SNP linkage map of pigeonpea (Cajanas cajan L Millsp). PLoS ONE. 2017;12(6):0179747. https://doi.org/10.1371/journal.pone.0179747.

    Article  CAS  Google Scholar 

  4. Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R, et al. Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.). DNA Res. 2011;18:153–64. https://doi.org/10.1093/dnares/dsr007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dutta S, Kumawat G, Singh BP, Gupta DK, Singh S, Dogra V, et al. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea (Cajanus cajan (L.) Millspaugh). BMC Plant Biol. 2011;11:17. https://doi.org/10.1186/1471-2229-11-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fang C, Luo J. Metabolic GWAS-based dissection of genetic bases underlying the diversity of plant metabolism. Plant J. 2019;97(1):91–100. https://doi.org/10.1111/tpj.14097.

    Article  CAS  PubMed  Google Scholar 

  7. Faris DG, Singh U. Pigeonpea: nutrition and products. In: Nene YL, Hall SD, Sheila VK, editors. The pigeonpea. Wallingford: CAB International; 1990. p. 401–34.

    Google Scholar 

  8. Fuller DQ, Murphy C, Kingwell-Banham E, Castillo CC, Naik S. Cajanus cajan (L.) Millsp. origins and domestication: the South and Southeast Asian archaeobotanical evidence. Genet Resour Crop Evol. 2019;66:1175–88. https://doi.org/10.1007/s10722-019-00774-w.

    Article  CAS  Google Scholar 

  9. https://www.uniprot.org/proteomes/UP000075243.

  10. Jambunathan R, Singh U. Grain quality of pigeonpea. In: Proceedings of international workshop on pigeonpeas, Patancheru, vol. 1; 1981. p. 351–356.

  11. Kremling KAG, Diepenbrock CH, Gore MA, Buckler ES, Bandillo NB. Transcriptome-wide association supplements genome-wide association in Zea mays. G3. 2019;9(9):3023–33. https://doi.org/10.1534/g3.119.400549.

    Article  CAS  PubMed  Google Scholar 

  12. Khoury CK, Castaneda-alvarez NP, Achicanoy HA, Sosa CC, Bernau V, Kassa MT, Norton SL, Maesen LJGVD, Upadhyaya HD, Ramirez-villegas J, et al. Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv. 2015;184:259–70. https://doi.org/10.1016/j.biocon.2015.01.032.

    Article  Google Scholar 

  13. Krishnan HB, Natarajan SS, Oehrle NW, Garrett WM, Darwish O. Proteomic analysis of pigeonpea (Cajanus cajan) seeds reveals the accumulation of numerous stress-related proteins. J Agric Food Chem. 2017;65:4572–81.

    Article  CAS  Google Scholar 

  14. Kudapa H, Bharti AK, Cannon SB, Farmer AD, Mulaosmanovic B, Kramer R, et al. A comprehensive transcriptome assembly of pigeonpea (Cajanus cajan L.) using Sanger and second-generation sequencing platforms. Mol Plant. 2012. https://doi.org/10.1093/mp/ssr111.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kumar V, Khan AW, Saxena RK, Garg V, Varshney RK. First-generation HapMap in Cajanus spp. reveals untapped variations in parental lines of mapping populations. Plant Biotechnol J. 2016;14(8):1673–81. https://doi.org/10.1111/pbi.12528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumawat G, Raje RS, Bhutani S, Pal JP, Mithra ASVRC, Gaikwad K, Sharma TR, Singh NK. Molecular mapping of QTLs for plant type and earliness traits in pigeonpea (Cajanus cajan L. Millsp.). BMC Genet. 2012;13:84. https://doi.org/10.1186/1471-2156-13-84.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Le Signor C, Aime D, Bordat A, Belghazi M, Labas V, Gouzy J, Young ND, et al. Genome-wide association studies with proteomics data reveal genes important for synthesis, transport and packaging of globulins in legume seeds. New Phytol. 2017;214(4):1597–613. https://doi.org/10.1111/nph.14500.

    Article  CAS  PubMed  Google Scholar 

  18. Mallikarjuna N, Kulbushan S, Lakshmi J, Varshney R, Srikanth S, Jadhav D. Differences between Cajanus cajan (L.) Millspaugh and C. cajanifolius (Haimes) van der Maesen, the progenitor species of pigeonpea. Genet Resour Crop Evol. 2012;59:411–7. https://doi.org/10.1007/s10722-011-9691-8.

    Article  Google Scholar 

  19. Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena K, Penmetsa RV, Varshney RK. Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.). Theor Appl Genet. 2014;127:2663–78. https://doi.org/10.1007/s00122-014-2406-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Munoz N, Liu A, Kan L, Li MW, Lam HM. Potential uses of wild germplasms of grain legumes for crop improvement. Int J Mol Sci. 2017;18(2):1–28. https://doi.org/10.3390/ijms18020328.

    Article  CAS  Google Scholar 

  21. Muthamilarasan M, Singh NK, Prasad M. Multi-omics approaches for strategic improvement of stress tolerance in underutilized crop species: a climate change perspective. Adv Genet. 2019;103:1–38. https://doi.org/10.1016/bs.adgen.2019.01.001.

    Article  CAS  PubMed  Google Scholar 

  22. Obala J, Saxena RK, Singh VK, Kale SM, Garg V, et al. Seed protein content and its relationships with agronomic traits in pigeonpea is controlled by both main and epistatic effects QTLs. Sci Rep. 2020;10:214. https://doi.org/10.1038/s41598-019-56903-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pal D, Mishra P, Sachan N, Ghosh AK. Biological activities and medicinal properties of Cajanus cajan (L) Millsp. J Adv Pharm Technol Res. 2011;2(4):207–14. https://doi.org/10.4103/2231-4040.90874.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pazhamala LT, Agarwal G, Bajaj P, Kumar V, Kulshreshtha A, Saxena RK, et al. Deciphering transcriptional programming during pod and seed development using RNA-Seq in pigeonpea (Cajanus cajan). PLoS ONE. 2016;11(10):e0164959. https://doi.org/10.1371/journal.pone.0164959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pendergrass SA, Buyske S, Jeff JM, Frase A, Dudek S, Bradfordet Y, et al. A phenome-wide association study (PheWAS) in the population architecture using genomics and epidemiology (PAGE) study reveals potential pleiotropy in African Americans. PLoS ONE. 2019;14(12):e0226771. https://doi.org/10.1371/journal.pone.0226771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pfeiffer WH, McClafferty B. HarvestPlus: breeding crops for better nutrition. Crop Sci. 2007;47:S88–105. https://doi.org/10.2135/cropsci2007.09.0020IPBS.

    Article  Google Scholar 

  27. Poland J, Endelman J, Dawson J, Rutkoski J, Wu SY, Manes Y, Dreisigacker S, et al. Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 2012;5:103–13. https://doi.org/10.3835/plantgenome2012.06.0006.

    Article  CAS  Google Scholar 

  28. Raju NL, Gnanesh BN, Lekha P, Jayashree B, Pande S, et al. The first set of EST resource for gene discovery and marker development in pigeonpea (Cajanus cajan L.). BMC Plant Biol. 2010;10:45. https://doi.org/10.1186/1471-2229-10-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rathinam M, Mishra P, Vasudevan M, Budhwar R, Mahato A, Prabha AL, et al. Comparative transcriptome analysis of pigeonpea, Cajanus cajan (L.) and one of its wild relatives Cajanus platycarpus (Benth) Maesen. PLoS ONE. 2019;14(7):e0218731. https://doi.org/10.1371/journal.pone.0218731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Saxena RK, Rathore A, Bohra A, Yadav P, Das RR, et al. Development and application of high-density Axiom®Cajanus SNP Array with 56 K SNPs to understand the genome architecture of released cultivars and founder genotypes for redefining future pigeonpea breeding programs. Plant Genome. 2018;11:180005. https://doi.org/10.3835/plantgenome2018.01.0005.

    Article  CAS  Google Scholar 

  31. Saxena RK, Saxena RK, Obala J, Sinjushin A, Kumar CVS, Saxena KB, Varshney RK. Characterization and mapping of Dt1 locus which co-segregates with CcTFL1 for growth habit in pigeonpea. Theor Appl Genet. 2017;130(9):1773–84. https://doi.org/10.1007/s00122-017-2924-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Semba RD. The rise and fall of protein malnutrition in global health. Ann Nutr Metab. 2016;69:79–88. https://doi.org/10.1159/000449175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sharma S, Agarwal N, Verma P. Pigeon pea (Cajanus cajan L.): a hidden treasure of regime nutrition. J Funct Environ Bot. 2011;1:91–101. https://doi.org/10.5958/j.2231-1742.1.2.010.

    Article  Google Scholar 

  34. Singh A, Sharma AK, Singh NK, Sharma TR. PpTFDB: a pigeonpea transcription factor database for exploring functional genomics in legumes. PLoS ONE. 2017;12(6):e0179736. https://doi.org/10.1371/journal.pone.0179736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S, et al. The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol. 2012;21(1):98–112. https://doi.org/10.1007/s13562-011-0088-8.

    Article  PubMed  Google Scholar 

  36. Singh N, Jain N, Kumar R, Jain A, Singh NK, Rai V. A comparative method for protein extraction and 2-D gel electrophoresis from different tissues of Cajanus cajan. Front Plant Sci. 2015;6:606. https://doi.org/10.3389/fpls.2015.00606.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Singh S, Mahato AK, Jayaswal PK, Singh N, Dheer M, et al. A 62 K genic-SNP chip array for genetic studies and breeding applications in pigeonpea (Cajanus cajan L. Millsp.). Sci Rep. 2020;10:4960. https://doi.org/10.1038/s41598-020-61889-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sonah H, Bastien M, Iquira E, Tardivel A, Legare G, Boyle B, et al. An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE. 2013;8:e54603.

    Article  CAS  Google Scholar 

  39. Van der Maesen LJG. India is the native home of the pigeonpea. In: Arends JC, Boelema G, De Groot CT, Leeuwenberg AJM, editors. Liber Gratulatorius in nonerem HCD de Wit Landbouwhoge school Miscellaneous Paper no. 19, Wageningen; 1980. p 257–262.

  40. Varshney R, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol. 2012;30(1):83–9. https://doi.org/10.1038/nbt.2022.

    Article  CAS  Google Scholar 

  41. Varshney RK, Penmetsa RV, Dutta S, Kulwal PL, Saxena RK, Datta S, et al. Pigeonpea genomics initiative (PGI): an international effort to improve crop productivity of pigeonpea (Cajanus cajan L.). Mol Breed. 2010;26(3):393–408. https://doi.org/10.1007/s11032-009-9327-2.

    Article  CAS  PubMed  Google Scholar 

  42. Varshney RK, Terauchi R, McCouch SR. Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol. 2014;12(6):e1001883. https://doi.org/10.1371/journal.pbio.1001883.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Varshney RK, Saxena RK, Upadhyaya HD, Khan AW, Yu Y, Kim C, et al. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet. 2017;49(7):1082–8. https://doi.org/10.1038/ng.3872.

    Article  CAS  PubMed  Google Scholar 

  44. Varshney RK, Thudi M, Pandey MK, Tardieu F, Ojiewo C, Vadez V, et al. Accelerating genetic gains in legumes for the development of prosperous smallholder agriculture: integrating genomics, phenotyping, systems modelling and agronomy. J Exp Bot. 2018;69(13):3293–312. https://doi.org/10.1093/jxb/ery088.

    Article  CAS  PubMed  Google Scholar 

  45. Wang H, Cimen E, Singh N, Buckler E. Deep learning for plant genomics and crop improvement. Curr Opin Plant Biol. 2020;54:34–41. https://doi.org/10.1016/j.pbi.2019.12.010.

    Article  CAS  PubMed  Google Scholar 

  46. Yadav P, Saxena KB, Hingane A, Kumar C, Kandalkar VS, Varshney RK, Saxena RK. An “Axiom Cajanus SNP Array” based high density genetic map and QTL mapping for high-selfing flower and seed quality traits in pigeonpea. BMC Genom. 2019;20:235. https://doi.org/10.1186/s12864-019-5595-3.

    Article  Google Scholar 

  47. Zargar SM, Nazir M, Rai V, Hajduch M, Agrawal GK, Rakwal R. Towards a common bean proteome atlas: looking at the current state of research and the need for a comprehensive proteome. Front Plant Sci. 2015;6:201. https://doi.org/10.3389/fpls.2015.00201.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

NS acknowledges the funding from Department of Science and Technology, Government of India through DST INSPIRE Faculty Award Grant (DST/INSPIRE/04/2018/003674).

Author information

Authors and Affiliations

Authors

Contributions

NS conceived, prepared the manuscript and got grant for undertaking this research work. VR and NKS has helped in drafting the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Nisha Singh.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corresponding Editor: Manoj Prasad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, N., Rai, V. & Singh, N.K. Multi-omics strategies and prospects to enhance seed quality and nutritional traits in pigeonpea. Nucleus 63, 249–256 (2020). https://doi.org/10.1007/s13237-020-00341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-020-00341-0

Keywords

Navigation