Skip to main content
Log in

Deterministic mean field games with control on the acceleration

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In the present work, we study deterministic mean field games (MFGs) with finite time horizon in which the dynamics of a generic agent is controlled by the acceleration. They are described by a system of PDEs coupling a continuity equation for the density of the distribution of states (forward in time) and a Hamilton–Jacobi equation for the optimal value of a representative agent (backward in time). The state variable is the pair \((x,v)\in {\mathbb {R}}^N\times {\mathbb {R}}^N\) where x stands for the position and v stands for the velocity. The dynamics is often referred to as the double integrator. In this case, the Hamiltonian of the system is neither strictly convex nor coercive, hence the available results on MFGs cannot be applied. Moreover, we will assume that the Hamiltonian is unbounded w.r.t. the velocity variable v. We prove the existence of a weak solution of the MFG system via a vanishing viscosity method and we characterize the distribution of states as the image of the initial distribution by the flow associated with the optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Achdou, Y., Buera, F. J., Lasry, J-M., Lions, P-L., Moll, B.: Partial differential equation models in macroeconomics. Fill’s. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130397, 19 pp (2028)

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics ETH Zürich. Birkhaüser Verlag, Basel (2005)

    MATH  Google Scholar 

  3. Benamou, J-D., Carlier, G., Santambrogio, F.: Variational mean field games, Active particles. Vol. 1, Advances in theory, models, and applications, 141–171, Model. Simul. Sci. Eng. Technol., Birkhäuser/Springer, Cham (2017)

  4. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi Bel lman Equations, Systems and Control: Foundations and Applications. Birkhauser, Boston (1997)

    MATH  Google Scholar 

  5. Bogachev, V.I., Krylov, N.V., Röckner, M., Shaposhnikov, S.V.: Fokker–Planck–Kolmogorov Equations, Mathematical Surveys and Monographs, 207. American Mathematical Society, Providence, RI (2015)

    Book  Google Scholar 

  6. Buckdahn, R., Cannarsa, P., Quincampoix, M.: Lipschitz continuity and semi-concavity properties of the value function of a stochastic control problem. NoDEA Nonlinear Differ. Equ. Appl. 17(6), 715–728 (2010)

    Article  Google Scholar 

  7. Cannarsa, P., Capuani, R.: Existence and uniqueness for Mean Field Games with state constraints, PDE models for multi-agent phenomena, 49–71, Springer INdAM Ser., 28, Springer, Cham (2018)

  8. Cannarsa, P., Capuani, R., Cardaliaguet, P.: \(C^{1,1}\)-smoothness of constrained solutions in the calculus of variations with application to mean field games. Math. Eng. 1(1), 174–203 (2018)

    Article  Google Scholar 

  9. Cannarsa, P., Capuani, R., Cardaliaguet, P.: Mean Field Games with state constraints: from mild to pointwise solutions of the PDE system. arXiv:1812.11374

  10. Cannarsa, P., Mendico, C.: Mild and weak solutions of Mean Field Games problem for linear control systems. arXiv:1907.02654

  11. Cannarsa, P., Sinestrari, C.: Semi-Concave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 48. Birkhauser, Boston (2004)

    MATH  Google Scholar 

  12. Cardaliaguet, P.: Notes on Mean Field Games, from P.L. Lions lectures at College de France. https://www.ceremade.dauphine.fr/cardalia/MFG20130420.pdf (2012)

  13. Cardaliaguet, P.: Long time average of first order mean field games and weak KAM theory. Dyn. Games Appl. 3, 473–488 (2013)

    Article  MathSciNet  Google Scholar 

  14. Cardaliaguet, P.: Weak solutions for first order mean field games with local coupling, Analysis and geometry in control theory and its applications, 111-158, Springer INdAM Ser., 11, Springer, Cham (2015)

  15. Cardaliaguet, P., Hadikhanloo, S.: Learning in mean field games: the fictitious play. ESAIM Control Optim. Calc. Var. 23(2), 569–591 (2017)

    Article  MathSciNet  Google Scholar 

  16. Cardaliaguet, P., Mészáros, A., Santambrogio, F.: First order mean field games with density constraints: pressure equals price. SIAM J. Control Optim. 54(5), 2672–2709 (2016)

    Article  MathSciNet  Google Scholar 

  17. Clarke, F.: Optimization and nonsmooth analysis, Classics in Applied Mathematics 5, SIAM, Philadelphia, PA, (2nd edition) (1990)

  18. Clarke, F.: Functional Analysis, Calculus of Variations and Optimal Control, Graduate Text in Mathematics 264. Springer, London (2013)

    Book  Google Scholar 

  19. Da Lio, F., Ley, O.: Uniqueness results for second-order Bellman-Isaacs equations under quadratic growth assumptions and applications. SIAM J. Control Optim. 45(1), 74–106 (2006)

    Article  MathSciNet  Google Scholar 

  20. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus, Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, (1991)

  21. Ikeda, Y.: The Cauchy problem of linear parabolic equations with discontinuous and unbounded coefficients. Nagoya Math. J. 41, 33–42 (1971)

    Article  MathSciNet  Google Scholar 

  22. Ishii, H.: On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions Funkcial. Ekvac. 38(1), 101–120 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Lady\(\check{z}\)enskaja, O. A., Solonnikov, V. A., Ural’ceva, N. N.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23 American Mathematical Society, Providence, R.I. (1968)

  24. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343(9), 619–625 (2006)

    Article  MathSciNet  Google Scholar 

  25. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343(10), 679–684 (2006)

    Article  MathSciNet  Google Scholar 

  26. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  Google Scholar 

  27. Lieberman, G.M.: Second order Parabolic Differential Equations. World Scientific Publishing Co. Inc, River Edge, NJ (1996)

    Book  Google Scholar 

  28. Lions, P-L.: Cours au Collège de France. www.college-de-france.fr

  29. Mannucci, P., Marchi, C., Mariconda, C., Tchou, N.: Non-coercive first order Mean Field Games. J. Differential Equation (2020). https://doi.org/10.1016/j.jde.2020.03.035

    Article  MathSciNet  MATH  Google Scholar 

  30. Orrieri, C., Porretta, A., Savaré, G.: A variational approach to the mean field planning problem. J. Funct. Anal. 277(6), 1868–1957 (2019)

    Article  MathSciNet  Google Scholar 

  31. Villani, C.: Optimal Transport, Old and New. Springer, Berlin (2009)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their fruitful comments and suggestions. The work of Y. Achdou and N. Tchou was partially supported by the ANR (Agence Nationale de la Recherche) through MFG project ANR-16-CE40-0015-01. Y. Achdou acknowledges support from the Chair Finance & Sustainable Development and the FiME Lab (Institut Europlace de Finance). The work of N. Tchou is partially supported by the Centre Henri Lebesgue ANR-11-LABX-0020-01. P. Mannucci and C. Marchi were members of GNAMPA-INdAM and were partially supported also by the research project of the University of Padova “Mean-Field Games and Nonlinear PDEs” and by the Fondazione CaRiPaRo Project “Nonlinear Partial Differential Equations: Asymptotic Problems and Mean-Field Games”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Mannucci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Let us now consider the second order MFG system: for a positive number \(\sigma \),

$$\begin{aligned} \left\{ \begin{array}{lll} (i)\ -\partial _t u-\sigma \Delta _{x,v} u-v\cdot D_xu+\frac{1}{2} \vert D_vu\vert ^2-\frac{1}{2} \vert v \vert ^2-l(x,v) =F[m](x, v),\ &{} \text {in }{\mathbb {R}}^{2N}\times (0,T),\\ (ii)\ \partial _t m-\sigma \Delta _{x,v} m-{{\,\mathrm{div}\,}}_v (m D_v u)-v\cdot D_xm=0, &{} \text {in }{\mathbb {R}}^{2N}\times (0,T),\\ (iii)\ m(x,v, 0)=m_0(x,v),\quad u(x,v,T)=G[m(T)](x, v),&{} \text {on }{\mathbb {R}}^{2N}. \end{array}\right. \nonumber \\ \end{aligned}$$
(6.1)

We aim at proving the existence and uniqueness of a classical solution to system (6.1). We shall see that these results are byproducts of the estimates that we have already used above in the vanishing viscosity limit. More precisely, the properties obtained in Sect. 4 will play a crucial role in what follows.

Theorem 6.1

Under our standing assumptions, there exists a classical solution to problem (6.1). Moreover, if the coupling costs F and G satisfy (2.3), the solution is unique.

Proof

Our arguments are reminiscent of those used in the proof of [12, Theorem 3.1]. We introduce

$$\begin{aligned} {\mathcal {C}}:=\left\{ m\in C^0([0,T]; {\mathcal {P}}_1({\mathbb {R}}^{2N})):\quad m(0)=m_0\right\} \end{aligned}$$

which is a non-empty closed and convex subset of \(C^0([0,T]; {\mathcal {P}}_1({\mathbb {R}}^{2N}))\). We define a map \({\mathcal {T}}\) as follows: for any \(m\in {\mathcal {C}}\), let u be the unique solution to (6.1)-(i) and \(u(x,v,T)=G[m(T)](x, v)\) found in Lemma 4.1; we set \({\mathcal {T}}(m)=\mu \) where \(\mu \) is the unique solution to (6.1)-(ii) and \(m(x,v, 0)=m_0(x,v)\) found in Lemma 4.2. Lemma 4.3 ensures that \({\mathcal {T}}\) maps \({\mathcal {C}}\) into itself.

By the same arguments as in the proof of Theorem 2.1, the map \({\mathcal {T}}\) is continuous with respect to the norm of \(C([0,T]; {\mathcal {P}}_1({\mathbb {R}}^{2N}))\) and it is compact. Hence, Schauder fixed point theorem ensures the existence of a fixed point m for \({\mathcal {T}}\). Let u denote the corresponding solution to (6.1)-(i) and -(iii). By Lemma 4.1 and Lemma 4.2 again, u and m are regular. In conclusion, (um) is the desired solution to (6.1).

Let us now prove the uniqueness part of the statement. Let \((u_1,m_1)\) and \((u_2,m_2)\) be two solutions; set \({\overline{u}}=u_1-u_2\). Our aim is to follow the arguments in the proof of Proposition 2.1. To this end, it is enough to prove that \({\overline{u}}\) is an admissible test-function for \(m_1\) and \(m_2\). Indeed, for any \(R>1\), let \(\phi _R\) be a cut-off function in \({\mathbb {R}}^{2N}\) defined by \(\phi _R(x,v):=\phi _1(x/R,v/R)\) where \(\phi _1\) is a \(C^2\) function such that \(\phi _1=1\) in \(B_1\), \(\phi _1=0\) outside \(B_{2}\). Clearly,

$$\begin{aligned}&D_{x,v}\phi _R=0 \quad \text {outside }\overline{B_{2R}{\setminus } B_R},\quad \Vert D_{x,v}\phi _R\Vert _\infty \le C/R\nonumber \\&\quad \text {and }\Vert \Delta _{x,v}\phi _R\Vert _\infty \le C/R^2. \end{aligned}$$
(6.2)

Using \(\phi _R {\overline{u}}\) as test-function in (6.1)-(ii) with \((u,m)=(u_i,m_i)\) for \(i=1\) or \(i=2\), we get

$$\begin{aligned} \nonumber 0= & {} \iint _{{\mathbb {R}}^{2N}\times [0,T]} m\left[ -\phi _R \partial _t {\overline{u}}-\sigma \Delta _{x,v} (\phi _R {\overline{u}})+ D_v u\cdot D_v(\phi _R {\overline{u}})+v\cdot D_x(\phi _R {\overline{u}})\right] \, dxdvdt\\\nonumber&+\int _{{\mathbb {R}}^{2N}}m(x,v,T)\phi _R \left( G[m_1(T)](x,v)-G[m_2(T)](x,v)\right) dxdv-\int _{{\mathbb {R}}^{2N}}m_0\phi _R {\overline{u}}dxdv\\ \nonumber= & {} \iint _{{\mathbb {R}}^{2N}\times [0,T]} m\phi _R\left( 2 v\cdot D_x {\overline{u}}+\frac{|D_v u_2|^2-|D_v u_1|^2}{2} +F[m_1] -F[m_2]+D_vu\cdot D_v{\overline{u}} \right) \, dxdvdt\\\nonumber&+\int _{{\mathbb {R}}^{2N}}m(x,v,T)\phi _R \left( G[m_1(T)](x,v)-G[m_2(T)](x,v)\right) dxdv-\int _{{\mathbb {R}}^{2N}}m_0\phi _R {\overline{u}}dxdv\\\nonumber&+ \iint _{{\mathbb {R}}^{2N}\times [0,T]} m\left( -\sigma {\overline{u}} \Delta _{x,v} \phi _R -2\sigma D_{x,v}\phi _R\cdot D_{x,v}{\overline{u}}\right) \, dxdvdt\\&+\iint _{{\mathbb {R}}^{2N}\times [0,T]} m\left( {\overline{u}} D_v u\cdot D_v\phi _R +{\overline{u}} v\cdot D_x\phi _R\right) \, dxdvdt \end{aligned}$$
(6.3)

where the second equality is due to equation (6.1)-(i). Since \(m>0\) and \(m\in L^\infty ((0,T);{\mathcal {P}}_2({\mathbb {R}}^{2N}))\) (see Lemma 4.2 and Lemma 4.3), by the estimates on \(u_i\) in Lemma 4.1, the dominated convergence theorem ensures that as \(R\rightarrow \infty \), the first two lines in right hand side of (6.3) converge to

$$\begin{aligned}&\iint _{{\mathbb {R}}^{2N}\times [0,T]} m\\ {}&\quad \times \left[ 2 v\cdot D_x {\overline{u}}-\frac{|D_v u_1|^2}{2} +\frac{|D_v u_2|^2}{2} +F[m_1] -F{\mathbb {R}}+D_vu\cdot D_v{\overline{u}}\right] \, dxdvdt\\&+\int _{{\mathbb {R}}^{2N}}m(x,v,T) \left( G[m_1(T)](x,v)-G[m_2(T)](x,v)\right) dxdv-\int _{{\mathbb {R}}^{2N}}m_0 {\overline{u}}dxdv; \end{aligned}$$

hence, it remains to prove that the last two lines in the right hand side of (6.3) converge to 0. Indeed, again by Lemmas 4.14.2 and 4.3, and by our estimates (6.2), the dominated convergence theorem yields

$$\begin{aligned} \iint _{{\mathbb {R}}^{2N}\times [0,T]} m\left( -\sigma {\overline{u}} \Delta _{x,v} \phi _R -2\sigma D_{x,v}\phi _R\cdot D_{x,v}{\overline{u}}\right) \, dxdvdt\rightarrow 0. \end{aligned}$$

Let us now address to the last integral in the right hand side of (6.3): the properties in (6.2) entail

$$\begin{aligned} \left| m\left( {\overline{u}} D_v u\cdot D_v\phi _R +{\overline{u}} v\cdot D_x\phi _R\right) \right| \le C m(1+|v|^2) \chi _R \end{aligned}$$

where \(\chi _R\) is the characteristic function of \(B_{2R}{\setminus } B_R\). Moreover, since \(m\in L^\infty ((0,T);{\mathcal {P}}_2({\mathbb {R}}^{2N}))\), the right hand side in the last inequality belongs to \(L^1\) independently of R. Therefore, again by the dominated convergence theorem, we get that as \(R\rightarrow \infty \) the last integral in (6.3) converges to 0. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achdou, Y., Mannucci, P., Marchi, C. et al. Deterministic mean field games with control on the acceleration. Nonlinear Differ. Equ. Appl. 27, 33 (2020). https://doi.org/10.1007/s00030-020-00634-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-020-00634-y

Keywords

Mathematics Subject Classification

Navigation