Skip to main content
Log in

Molecular Weight Determination of Chitosan with Antibacterial Activity Using Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry Analysis

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The antibacterial effect of chitosan with different molecular weights was investigated to define their potent biological activity. Both chitosan hydrolysates designated to CTSN-P30 and CTSN-B8 derived from the hydrolysis of high molecular weight chitosan showed significant synergistic antibacterial effects toward Staphylococcus aureus in the presence of 1,3-butylene glycol. The concentration-dependent antimicrobial effect is very important in determining the minimum inhibitory concentration (MIC) of both CTSN-P30 and CTSN-B8. Each MIC50 of CTSN-P30 and CTSN-B8 was determined to be about 25 and 50 µg/mL, respectively. Among chitosan hydrolysates, CTSN-P30 can effectively protect the membrane from the penetrating of fine dust which may contain unspecified microorganisms. Also, CTSN-P30, which showed very significant antimicrobial activity, was confirmed to be a hydrolysate containing (GlcNAc)3, and other hydrolysates consisting of (GlcN)5 to (GlcN)15 using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry analysis. These results demonstrated the feasibility of CTSN-P30 and 1,3-butylene glycol to use as a potent antibacterial and find a dustproof agent for the preparation of various industrial products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. A. Brown, B. Wang, and J. H. Oh, J. Food Prot., 71, 319 (2008).

    Article  CAS  Google Scholar 

  2. J. C. Fernandes, F. K. Tavaria, J. C. Soares, O. S. Ramos, M. J. Monteiro, M. E. Pintado, and F. X. Malcata, Food Microbiol., 25, 922 (2008).

    Article  CAS  Google Scholar 

  3. M. Kaya, M. Asan-Ozusaglam, and S. Erdogan, J. Biosci. Bioeng., 121, 678 (2016).

    Article  CAS  Google Scholar 

  4. T. Kinnunen and M. Koskela, Acta. Derm. Venereol., 71, 148 (1991).

    CAS  PubMed  Google Scholar 

  5. M. Abbas, T. Hussain, M. Arshad, A. R. Ansari, A. Irshad, J. Nisar, F. Hussain, N. Masood, A. Nazir, and M. Iqbal, Int. J. Biol. Macromol., 140, 871 (2019).

    Article  CAS  Google Scholar 

  6. N. Alizadeh and S. Malakzadeh, Int. J. Biol. Macromol., 147, 778 (2020).

    Article  CAS  Google Scholar 

  7. J. Radwan-Praglowska, M. Piatkowski, V. Deineka, L. Janus, V. Korniienko, E. Husak, V. Holubnycha, I. Liubchak, V. Zhurba, A. Sierakowska, M. Pogorielov, and D. Bogdal, Molecules, 24, 2629 (2019).

    Article  Google Scholar 

  8. E. Szymanska and K. Winnicka, Mar. Drugs, 13, 1819 (2015).

    Article  CAS  Google Scholar 

  9. J. Zhang, W. Xia, P. Liu, Q. Cheng, T. Tahirou, W. Gu, and B. Li, Mar. Drugs, 8, 1962 (2010).

    Article  CAS  Google Scholar 

  10. W. Dong, B. Han, K. Shao, Z. Yang, Y. Peng, Y. Yang, and W. Liu, J. Mater. Sci. Mater. Med., 23, 2945 (2012).

    Article  CAS  Google Scholar 

  11. J. Kumirska, M. X. Weinhold, J. C. Sauvageau, J. Thöming, Z. Kaczyński, and P. Stepnowski, J. Pharm. Biomed. Anal., 50, 587 (2009).

    Article  CAS  Google Scholar 

  12. D. Das and N. Das, J. Hazard. Mater., 278, 597 (2014).

    Article  CAS  Google Scholar 

  13. T. Akther, M. Ahmed, M. Shohel, F. K. Ferdousi, and A. Salam, Environ. Sci. Pollut. Res. Int., 26, 5475 (2019).

    Article  CAS  Google Scholar 

  14. B. Dogra, S. Amna, Y. I. Park, and J. K. Park, Macromol. Res., 25, 172 (2017).

    Article  CAS  Google Scholar 

  15. S. Y. Chae, M. K. Jang, and J. W. Nah, J. Control Release, 102, 383 (2005).

    Article  CAS  Google Scholar 

  16. Y. Chen, X. S. Luo, Z. Zhao, Q. Chen, D. Wu, X. Sun, L. Wu, and L. Jin, Ecotoxicol. Environ. Saf., 165, 505 (2018).

    Article  CAS  Google Scholar 

  17. M. Soleimani, N. Amini, B. Sadeghian, D. S. Wang, and L. P. Fang, J. Environ. Sci., 72, 166 (2018).

    Article  CAS  Google Scholar 

  18. C. A. Spence, R. D. Boyd, C. D. Wray, and D. M. Whitehead, J. Anim. Sci., 60, 1280 (1985).

    Article  CAS  Google Scholar 

  19. M. Lever, Anal. Biochem., 81, 21 (1977).

    Article  CAS  Google Scholar 

  20. M. Lever, T. A. Walmsley, R. S. Visser, and S. J. Ryde, Anal. Biochem., 139, 205 (1984).

    Article  CAS  Google Scholar 

  21. S. Mushtaq, J. A. Khan, F. Rabbani, U. Latif, M. Arfan, and M. A. Yameen, J. Med. Microbiol., 66, 318 (2017).

    Article  CAS  Google Scholar 

  22. C. Vasile, M. Sivertsvik, A. C. Mitelut, M. A. Brebu, E. Stoleru, J. T. Rosnes, E. E. Tanase, W. Khan, D. Pamfil, C. P. Cornea, A. Irimia, and M. E. Popa, Materials, 10, 45 (2017).

    Article  Google Scholar 

  23. A. Y. Yoo, M. Alnaeeli, and J. K. Park, Process Biochem., 51, 463 (2016).

    Article  CAS  Google Scholar 

  24. Y. H. Lee, S. Y. Park, J. E. Park, B. O. Jung, J. E. Park, J. K. Park, and Y. J. Hwang, Int. J. Mol. Sci., 20, 3085 (2019).

    Article  CAS  Google Scholar 

  25. J. Jirawutthiwongchai, I. Y. Klaharn, N. Hobang, K. Mai-Ngam, J. Klaewsongkram, A. Sereemaspun, and S. Chirachanchai, Carbohydr. Polym., 141, 41 (2016).

    Article  CAS  Google Scholar 

  26. H. Sakaguchi, M. Watanabe, C. Ueoka, E. Sugiyama, T. Taketomi, S. Yamada, and K. Sugahara, J. Biochem., 129, 107 (2001).

    Article  CAS  Google Scholar 

  27. E. Vinogradov and K. Bock, Carbohydr. Res., 309, 57 (1998).

    Article  CAS  Google Scholar 

  28. A. Teimouri, S. J. Azami, H. Keshavarz, F. Esmaeili, R. Alimi, S. A. Mavi, and S. Shojaee, Int. J. Nanomed., 13, 1341 (2018).

    Article  CAS  Google Scholar 

  29. R. Singh, T. Weikert, S. Basa, and B. M. Moerschbacher, Sci. Rep., 9, 1132 (2019).

    Article  Google Scholar 

  30. K. Seki, Y. Nishiyama, and M. Mitsutomi, J. Biosci. Bioeng., 127, 425 (2019).

    Article  CAS  Google Scholar 

  31. S. A. Kashif and J. K. Park, Macromol. Res., 27, 551 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JKP and YJH conceptualized the idea, designed and coordinated the study. SYP performed the preparation of chitosan hydrolysates with different molecular weights, and YHL performed antibacterial and dust-proofing experiments. JKP supervised and edited the manuscript, YHL generated fund, YJH provided technical comments for the study. All authors read and approved the final version of the manuscript before submission.

Corresponding authors

Correspondence to You Jin Hwang or Jae Kweon Park.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This work was carried out based on financial support (202105740001) from Foodyworm, Co., Ltd., which was supported by ⌜Green Bio Venture Start-up Business Support Project⌝ Ministry of Agriculture, Food and Rural Affairs, Republic of Korea (Organization in charge: Foundation of Agri, Tech, Commercialization & Transfer). Also, this work was supported by the Gachon University research fund of 202106680001.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.H., Park, S.Y., Hwang, Y.J. et al. Molecular Weight Determination of Chitosan with Antibacterial Activity Using Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry Analysis. Macromol. Res. 30, 90–98 (2022). https://doi.org/10.1007/s13233-022-0013-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-022-0013-0

Keywords

Navigation