Skip to main content
Log in

Synthesis, Characterization of Erythromycin Propionate Core-Based Star Poly(ether urethane)s and Their Antibacterial Properties

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

New four-arm star poly(ether urethanes) (star PUs) based on erythromycin propionate core are presented. Toluene 2,4-diisocyanate (TDI) and 4,4′-methylenebis (phenyl isocyanate) (MDI) as diisocyanates and Terathane of different molecular weights as polyether arms were employed in their synthesis in order to study their structure-property relationship. The synthesized star PUs were analyzed through IR and 1H NMR spectroscopies, gel permeation chromatography, X-ray diffraction, thermogravimetry, differential scanning calorimetry. The IR spectral changes obtained on heating the samples were investigated. Disc-diffusion method was employed for antimicrobial tests. The values of the glass transition temperature are higher than those of starting polyethers attributable to the influence of the more rigid erythromycin propionate core bearing urethane groups. The melting temperatures corresponding to soft polyether arms are in the melting temperature range of starting polyethers. At higher temperatures melting phenomena associated to hard urethane core are obtained. The IR spectra recorded at various temperatures reveal that the composition of the hard segment having MDI in the structure ensures higher conformation stability during heating process. The crystalline peaks in the X-ray diffractograms are consequence of polyether arms crystallinity. MDI and higher polyether molecular weight increase the thermal stability. The values of hydrodynamic radii increase with increasing polyether arm length and are higher for TDI star PUs than MDI star PU because of the expanded structures of the former ones. The antibacterial study reveals that for hospital S. aureus strain the diameters of inhibition zones are lower than for S. aureus ATCC 25923.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Wu, W. Wang, and J. Li, Prog. Polym. Sci., 46, 55 (2015).

    Article  CAS  Google Scholar 

  2. N. H. Aloorkar, A. S. Kulkarni, R. A. Patil, and D. J. Ingale, Int. J. Pharm. Sci. Nanotechnol., 5, 1675 (2012).

    Google Scholar 

  3. A. B. Burns and R. A. Register, Macromolecules, 49, 9521 (2016).

    Article  CAS  Google Scholar 

  4. M. Aghajanzadeh, M. Zamani, K. Rostamizadeh, A. Sharafi, and H. Danafar, J. Macromol. Sci. Part A, 55, 559 (2018).

    Article  CAS  Google Scholar 

  5. T. Etrych, J. Strohalm, P. Chytil, P. Cernoch, L. Starovoytova, M. Pechar, and K. Ulbrich, Eur. J. Pharm. Sci., 42, 527 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. L. Kotrchova, L. Kostka, and T. Etrych, Physiol. Res., 67, S293 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. H. Baabur-Cohen, L. L. Vossen, H. R. Kruger., A. Eldar-Boock, E. Yeini, N. Landa-Rouben, G. Tiram, S. Wedepohl, E. Markovsky, J. Leor, M. Calderon, and R. Satchi-Fainaro, J. Control. Release, 257, 118 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. A. W. Jackson and D. A. Fulton, Polym. Chem., 4, 31 (2013).

    Article  CAS  Google Scholar 

  9. E. H. H. Wong, M. M. Khin, V. Ravikumar, Z. Si, S. A. Rice, and M. B. Chan-Park, Biomacromolecules, 17, 1170 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. J. J. T. M. Swartjes, D. H. Veeregowda, H. C. van der Mei, H. J. Busscher, and P. K. Sharma, Adv. Funct. Mater., 24, 4435 (2014).

    Article  CAS  Google Scholar 

  11. H. Mortazavian, G. A. Picquet, J. Lejnieks, L. A. Zaidel, C. P. Myers, and K. Kuroda, J. Funct. Biomater., 10, 56 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  12. T.-L. Wang, F.-J. Huang, and S.-W. Lee, Polym. Int., 51, 1348 (2002).

    Article  CAS  Google Scholar 

  13. Z. Xu, Y. Cui, T. Li, H. Dang, J. Li, and F. Cheng, Macromol. Chem. Phys., 221, 2000082 (2020).

    Article  CAS  Google Scholar 

  14. Y. Gao, W. Liu, L. Tang, Y. Zhu, and J. Qu, J. Macromol. Sci. Part A, DOI: https://doi.org/10.1080/10601325.2021.1894075 (2021).

  15. W. Chen, C. Chen, W. Yan, C. Yi, S. Wu, K. W. K. Yeung, and Z. Xu, J. Appl. Polym. Sci., 118, 99 (2010).

    Article  CAS  Google Scholar 

  16. D. Filip, D. Macocinschi, E. Paslaru, C. G. Tuchilus, and S. Vlad, React. Funct. Polym., 102, 70 (2016).

    Article  CAS  Google Scholar 

  17. D. Filip, D. Macocinschi, C. G. Tuchilus, S. Vlad, M. F. Zaltariov, and C. D. Varganici, Polym. Bull., 75, 701 (2018).

    Article  CAS  Google Scholar 

  18. V. Cozan, M. Avadanei, S. Shova, and M. F. Zaltariov, Liq. Cryst., 46, 492 (2019).

    Article  CAS  Google Scholar 

  19. C. Prisacariu, in Polyurethane Elastomers, From Morphology to Mechanical Aspects, Springer-Verlag, Wien, 2011, pp 23–60.

    Book  Google Scholar 

  20. D. Rosu, N. Tudorachi, and L. Rosu, J. Anal. Appl. Pyrol., 89, 152 (2010).

    Article  CAS  Google Scholar 

  21. M. M. Coleman, K. H. Lee, D. J. Skrovanek, and P. C. Painter, Macromolecules, 19, 2149 (1986).

    Article  CAS  Google Scholar 

  22. S.-H. Kang, D.-C. Ku, J.-H. Lim, Y.-K. Yang, N.-S. Kwak, and T.-S. Hwang, Macromol. Res., 13, 212 (2005).

    Article  CAS  Google Scholar 

  23. T. W. Son, D. W. Lee, and S. K. Lim, Polym. J., 31, 563 (1999).

    Article  CAS  Google Scholar 

  24. E. Nunez, C. Ferrando, E. Malmstrom, H. Claesson, P.-E. Werner, and U. W. Gedde, Polymer, 45, 5251 (2004).

    Article  CAS  Google Scholar 

  25. M. Shibayama, H. Takahashi, H. Yamaguchi, S. Sakurai, and S. Nomura, Polymer, 35, 2944 (1994).

    Article  CAS  Google Scholar 

  26. M. Naffakh, C. Marco, and G. Ellis, Polymers, 7, 2175 (2015).

    Article  CAS  Google Scholar 

  27. M. C. Righetti and E. Tombari, Thermochim. Acta, 522, 118 (2011).

    Article  CAS  Google Scholar 

  28. A. Frick and A. Rochman, Polym. Test., 23, 413 (2004).

    Article  CAS  Google Scholar 

  29. A. W. Coats and J. T. Redfern, Nature, 201, 68 (1964).

    Article  CAS  Google Scholar 

  30. E. Dyer and G. E. Newborn, J. Am. Chem. Soc., 80, 5495 (1958).

    Article  CAS  Google Scholar 

  31. R. Bilbao, J. F. Mastral, J. Ceamanos, and M. E. Aldea, J. Anal. Appl. Pyrolysis, 37, 69 (1996).

    Article  CAS  Google Scholar 

  32. H. K. Lee and S. W. Ko, J. Appl. Polym Sci., 50, 1269 (1993).

    Article  CAS  Google Scholar 

  33. L. Jiao, H. Xiao, Q. Wang, and J. Sun, Polym. Degrad. Stab., 98, 2687 (2013).

    Article  CAS  Google Scholar 

  34. D. K. Chattopadhyay and D. C. Webster, Prog. Polym. Sci., 34, 1068 (2009).

    Article  CAS  Google Scholar 

  35. Z. S. Petrovic, Z. Zavargo, J. H. Flyn, and W. J. Macknight, J. Appl. Polym. Sci., 51, 1087 (1994).

    Article  CAS  Google Scholar 

  36. J. K. Armstrong, R. B. Wenby, H. J. Meiselman, and T. C. Fisher, Biophys. J., 87, 4259 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. M. A. Masuelli, J. Pol. Biopol. Phys. Chem., 2, 37 (2014).

    CAS  Google Scholar 

  38. E. S. Kim, B. C. Kim, and S. H. Kim, J. Polym. Sci. Part B Polym. Phys., 42, 939 (2004).

    Article  CAS  Google Scholar 

  39. J. A. Haigh, C. Nguyen, R. G. Alamo, and L. Mandelkern, J. Therm. Anal. Calorim., 59, 435 (2000).

    Article  CAS  Google Scholar 

  40. Kucers’ The Use of Antibiotics, 6th ed., M. L. Grayson, Ed., Vol. 1, CRC Press, Taylor and Francis Group, Boca Raton, 2010.

    Google Scholar 

  41. D. Jelic and R. Antolovic, Antibiotics, 5, 29 (2016).

    Article  PubMed Central  Google Scholar 

  42. E. L. Cyphert, J. D. Wallat, J. K. Pokorski, and H. A. von Recum, Antibiotics, 6, 11 (2017).

    Article  PubMed Central  CAS  Google Scholar 

  43. I. Kanfer, M. F. Skinner, and R. B. Walker, J. Chromatogr. A, 812, 255 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. W. Xiao, B. Chen, S. Yao, and Z. Cheng, J. Chromatogr. B, 817, 153 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant of Ministry of Research and Innovation, CNCS — UEFISCDI, project number PN-III-P4-ID-PCCF-2016-0050, within PNCDI III.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Filip.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filip, D., Macocinschi, D., Tuchilus, C.G. et al. Synthesis, Characterization of Erythromycin Propionate Core-Based Star Poly(ether urethane)s and Their Antibacterial Properties. Macromol. Res. 29, 613–624 (2021). https://doi.org/10.1007/s13233-021-9069-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9069-5

Keywords

Navigation