Skip to main content
Log in

Characterization for pyrolysis of thermoplastic polyurethane by thermal analyses

  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The pyrolysis kinetics of polyurethanes synthesized from polycaprolactone diol (PCL) and diisocyanate (HDI, H12MDI) using catalysts such as dibutyltin dilaurate (DBTDL) were studied by a thermogravimetric (TG) technique, which involved heating the sample at the rates of 10, 20 and 30 °C/min. The effect of the kind of diisocyanate and the hard segment contents on the activation energy and reaction order were examined at conversions ranging from 1 to 100%. The activation energies at first increased slowly with increasing conversion. Also, differential scanning calorimetry (DSC) was used to investigate the structural differences in each polyurethane. DSC can reveal the melting behavior, in terms of the glass transition temperature (T g ), which is known to vary as a function of the stoichiometry and processing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Woods,The ICI Polyurethanes Book, 2nd ed., John Wiley & Sons, Chichester, 1990.

    Google Scholar 

  2. Z. Wirpsza,Polyurethanes; Chemistry, Technology and Applications, Ellis Horwood, New York, 1993, pp 1–6.

    Google Scholar 

  3. R. Font, A. Fullana, J. A., Caballero, J. Candela, and A. Garcia,J. Appl. Polym. Sci.,58–59, 63 (2001).

    Google Scholar 

  4. A. Frick and A. Rochman,Polymer Testing,23, 413 (2004).

    Article  CAS  Google Scholar 

  5. S.-M. Kim, N.-S. Kwak, Y.-K. Yang, B.-K. Yim, B.-Y. Park, and T.-S. Hwang,Polymer(Korea),29, 253 (2005).

    CAS  Google Scholar 

  6. N. R. Legge, G. Hodlen, H. E. Schroeder,Thermoplastic Elastomers, Hanser Publishers, Munich, 1987, p. 16.

    Google Scholar 

  7. B. Chiou and P. E. Schoen,J. Appl. Polym. Sci.,83, 212 (2002).

    Article  CAS  Google Scholar 

  8. M. S. Sanchez-Adsuar, E. Papon, and J.-J. Villenave,J. Appl. Polym. Sci.,76, 1596 (2000).

    Article  CAS  Google Scholar 

  9. M. Herrera, G. Matuscheka, and A. Kettrupa,Polym. Degrad. Stabil.,78, 323 (2002).

    Article  CAS  Google Scholar 

  10. C. Rotival, E. Renacco, C. Arfi, A. M. Pauli, and J. Pastor,J. Thermal Anal.,41, 1519 (1994).

    Article  CAS  Google Scholar 

  11. D. Y. Takamoto and M. A. Petrich,Ind. Eng. Chem. Res.,33, 3004 (1994).

    Article  CAS  Google Scholar 

  12. M. M. Esperanza, R. Font, and A. N. Garcia,J. Hazard. Mater.,77, 107 (2000).

    Article  CAS  Google Scholar 

  13. C. G. Lee, S. H. Kang, J. S. Kim, J. S. Yun, Y. Kang, and M. J. Choi,J. Korean Ind. Eng. Chem.,15, 188 (2004).

    CAS  Google Scholar 

  14. H. L. Friedman,J. Polym. Sci. Part C,6, 183 (1963).

    Google Scholar 

  15. S. H. Kang, S. M. Son, C. G. Lee, S. H. Jung, Y. Kang, and M. J. Choi,Int’l Sym. Green Technology for Resources and Materials Recycling,271 (2004).

  16. T. K. Kwei,J. Appl. Polym. Sci.,28, 2891 (1982).

    Article  Google Scholar 

  17. J. H. Yang, B. C. Chun, Y. C. Chung, and J. H. Cho,Polymer,44, 3251 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, SH., Ku, DC., Lim, JH. et al. Characterization for pyrolysis of thermoplastic polyurethane by thermal analyses. Macromol. Res. 13, 212–217 (2005). https://doi.org/10.1007/BF03219054

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03219054

Keywords

Navigation