Skip to main content
Log in

Reduction of Physical Strength and Enhancement of Anti-Protein and Anti-Lipid Adsorption Abilities of Contact Lenses by Adding 2-Methacryloyloxyethyl Phosphorylcholine

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Biocompatible 2-methacryloyloxyethyl phosphorylcholine (MPC) can enhance the adsorption of water molecules and is therefore used for manufacturing contact lenses. This study investigated the mechanical strength, anti-protein deposition, and anti-lipid adsorption effects of MPC addition to contact lenses. Experimental contact lenses produced by copolymerizing multiple ratios of MPC to 2-hydroxyethyl methacrylate (HEMA) were analyzed. Atomic force microscopy revealed that MPC addition increased surface roughness. The anti-protein deposition and anti-lipid adsorption effects on poly(HEMA-MPC) polymers of various phosphorylcholine quantities were experimentally confirmed. The water content of the contact lenses was proportional to the MPC content in the polymer. The hydrated PC moiety of MPC drastically altered the network of the poly-HEMA polymer by inserting water molecules, which were trapped in the concave region of the surface. MPC addition had negative effects on all examined strength factors because of structural destabilization of the copolymer through water insertion. The anti-deposition effects of MPC were verified by examining the lysozyme and lipid adsorption abilities of the prepared contact lenses. Our results revealed that MPC enhanced interactions of the poly(HEMA-MPC) copolymer with water molecules; these interactions weakened the mechanical strength of the copolymer but markedly improved the anti-adsorption property of the biomolecules. The optimal proportion of HEMA-MPC for contact lenses is in the range 14.9%–28.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. A. Musgrave and F. Fang, Materials, 12, 261 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  2. T. Goda, R. Matsuno, T. Konno, M. Takai, and K. Ishihara, J. Biomed. Mater. Res. B, 89B, 184 (2009).

    Article  CAS  Google Scholar 

  3. S. Scholtz and G. Auffarth, 50 Years of Soft Contact Lenses: Life and Impact of Prof. Otto Wichterle, 2012.

  4. P. C. Nicolson and J. Vogt, Biomaterials, 22, 3273 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. T. S. Bhamra and B. J. Tighe, Cont. Lens Anterior. Eye, 40, 70 (2017).

    Article  PubMed  Google Scholar 

  6. L. Wang, C. Lu, H. Liu, S. Lin, K. Nan, H. Chen, and L. Li, RSC Adv., 6 (2015).

  7. S. Xin-Yuan and T. Tian-Wei, J. Bioact. Compat. Pol., 19, 467 (2004).

    Article  CAS  Google Scholar 

  8. M. Kita, Y. Ogura, Y. Honda, S.-H. Hyon, W. Cha, II, and Y. Ikada, Graefes Arch. Clin. Exp. Ophthalmol., 228, 533 (1990).

    Article  CAS  PubMed  Google Scholar 

  9. J. C. Hutter, J. A. Green, and M. B. Eydelman, Eye Contact Lens, 38, 358 (2012).

    Article  PubMed  Google Scholar 

  10. R. Moreddu, D. Vigolo, and A. K. Yetisen, Adv. Healthc. Mater., 8, 1900368 (2019).

    Article  CAS  Google Scholar 

  11. T. Goda and K. Ishihara, Expert Rev. Med. Devic., 3, 167 (2006).

    Article  CAS  Google Scholar 

  12. J. H. Lee, J. S. Youm, H. T. Ju, and J. C. Kim, J. Appl. Polym. Sci., 137, 48622 (2020).

    Article  CAS  Google Scholar 

  13. A. Weeks, L.N. Subbaraman, L. Jones, and H. Sheardown, J. Biomater. Sci. Polym. Ed., 23, 1021 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. D. Luensmann and L. Jones, Contact Lens Anterio., 35, 53 (2012).

    Article  Google Scholar 

  15. N.-P.-D. Tran and M.-C. Yang, Polymers (Basel), 11, 944 (2019).

    Article  CAS  Google Scholar 

  16. L. Jones, M. Senchyna, M.-A. Glasier, J. Schickler, I. Forbes, D. Louie, and C. May, Lysozyme and Lipid Deposition on Silicone Hydrogel Contact Lens Materials, 2003.

  17. L. Santos, D. Rodrigues, M. Lira, M. E. C. D. R. Oliveira, R. Oliveira, E. Y. P. Vilar, and J. Azeredo, Contact Lens Anterio., 30, 183 (2007).

    Article  Google Scholar 

  18. W. G. Pitt, K. X. Perez, N. K. Tam, E. Handly, J. A. Chinn, X. M. Liu, and E. P. Maziarz, J. Biomed. Mater. Res. B, 101, 1516 (2013).

    Article  CAS  Google Scholar 

  19. G. Young, R. Garofalo, S. Peters, and O. Harmer, Eye Contact Lens, 37, 337 (2011).

    Article  PubMed  Google Scholar 

  20. E. Worp, H. Schweizer, M. Lampa, M. van Beusekom, and M. Andre, The Future of Soft Contact Lens Fitting Starts Here, 2014.

  21. R. Mosuela, S. Mustafa, S. Gould, H. Hassanin, R. G. Alany, and A. ElShaer, Colloid. Surf. B, 163, 91 (2018).

    Article  CAS  Google Scholar 

  22. N.-P.-D. Tran and M.-C. Yang, J. Polym. Res., 26, 143 (2019).

    Article  CAS  Google Scholar 

  23. I. Tranoudis and N. Efron, Cont. Lens Anterior. Eye, 27, 177 (2004).

    Article  PubMed  Google Scholar 

  24. B. A. Holden and G. W. Mertz, Invest. Ophth. Vis. Sci., 25, 1161 (1984).

    CAS  Google Scholar 

  25. D. M. Harvitt and J. A. Bonanno, Optometry Vision Sci., 76, 712 (1999).

    Article  CAS  Google Scholar 

  26. B. J. Tighe, Br. Polym. J., 8, 71 (1976).

    Article  CAS  Google Scholar 

  27. M. F. Refojo and F.-L. Leong, J. Membr. Sci., 4, 415 (1978).

    Article  Google Scholar 

  28. K. Dumbleton, Cont. Lens Anterior. Eye, 25, 137 (2002).

    Article  PubMed  Google Scholar 

  29. M. C. Lin and T. N. Yeh, Eye Contact Lens, 39, 115 (2013).

    Article  PubMed  Google Scholar 

  30. N. Efron and P. B. Morgan, Clin. Exp. Optom., 92, 329 (2009).

    Article  PubMed  Google Scholar 

  31. M. Kazemi Ashtiani, M. Zandi, P. Shokrollahi, M. Ehsani, and H. Baharvand, Polym. Adv. Technol., 29, 1227 (2018).

    Article  CAS  Google Scholar 

  32. L. Zhou, S. Z. Zhao, S. K. Koh, L. Chen, C. Vaz, V. Tanavde, X. R. Li, and R. W. Beuerman, J. Proteomics, 75, 3877 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. N. B. Omali, L. N. Subbaraman, C. Coles-Brennan, Z. Fadli, and L. W. Jones, Optometry Vision Sci., 92, 750 (2015).

    Article  Google Scholar 

  34. M. F. Refojo and F. J. Holly, Eye Contact Lens, 3, 23 (1977).

    CAS  Google Scholar 

  35. C. Skotnitsky, P. R. Sankaridurg, D. F. Sweeney, and B. A. Holden, Clin. Exp. Optom., 85, 193 (2002).

    Article  PubMed  Google Scholar 

  36. M. R. Allansmith, D. R. Korb, J. V. Greiner, A. S. Henriquez, M. A. Simon, and V. M. Finnemore, Am. J. Ophthalmol., 83, 697 (1977).

    Article  CAS  PubMed  Google Scholar 

  37. D. Mirejovsky, A. S. Patel, and D. D. Rodriguez, Curr. Eye. Res., 10, 187 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. C. F. Kreiner, Journal of The British Contact Lens Association, 3, 76 (1980).

    Article  Google Scholar 

  39. S. E. G. Nilsson and L. Andersson, Acta Ophthalmol., 64, 221 (1986).

    Article  CAS  Google Scholar 

  40. A. Rohit, M. Willcox, and F. Stapleton, Eye Contact Lens, 39, 247 (2013).

    Article  PubMed  Google Scholar 

  41. B. J. Mondino, S. M. Salamon, and G. W. Zaidman, Surv. Ophthalmol., 26, 337 (1982).

    Article  CAS  PubMed  Google Scholar 

  42. R. C. Tripathi, B. J. Tripathi, and M. Ruben, Ophthalmology, 87, 365 (1980).

    Article  CAS  PubMed  Google Scholar 

  43. R. L. Taylor, M. D. P. Willcox, T. Williams, and J. Verran, Modulation of Bacterial Adhesion to Hydrogel Contact Lenses by Albumin, 1998.

  44. L. N. Subbaraman, R. Borazjani, H. Zhu, Z. Zhao, L. Jones, and M. D. P. Willcox, Optometry Vision Sci., 88, 959 (2011).

    Article  Google Scholar 

  45. M. D. P. Willcox, Optometry Vision Sci., 84, 273 (2007).

    Article  Google Scholar 

  46. K. Ishihara, T. Ueda, and N. Nakabayashi, Polym. J., 22, 355 (1990).

    Article  CAS  Google Scholar 

  47. K. Ishihara, R. Aragaki, T. Ueda, A. Watenabe, and N. Nakabayashi, J. Biomed. Mater. Res., 24, 1069 (1990).

    Article  CAS  PubMed  Google Scholar 

  48. K. Ishihara, N. P. Ziats, B. P. Tierney, N. Nakabayashi, and J. M. Anderson, J. Biomed. Mater. Res., 25, 1397 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. L. Xu, P. Ma, B. Yuan, Q. Chen, S. Lin, X. Chen, Z. Hua, and J. Shen, RSC Adv., 4, 15030 (2014).

    Article  CAS  Google Scholar 

  50. J.-S. Kwon, M.-J. Lee, J.-Y. Kim, D. Kim, J.-H. Ryu, S. Jang, K.-M. Kim, C.-J. Hwang, and S.-H. Choi, PLoS ONE, 14, e0211007 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Chu, H. Kudo, T. Shirai, K. Miyajima, H. Saito, N. Morimoto, K. Yano, Y. Iwasaki, K. Akiyoshi, and K. Mitsubayashi, Biomed. Microdevices, 11, 837 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. M. Sakakida, K. Nishida, M. Shichiri, K. Ishihara, and N. Nakabayashi, Sens. Actuat. B Chem., 13, 319 (1993).

    Article  CAS  Google Scholar 

  53. S. Zhang, Y. Benmakroha, P. Rolfe, T. Shinobu, and I. Kazuhiko, Biosens. Bioelectron., 11, 1019 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. M. Chu, T. Shirai, D. Takahashi, T. Arakawa, H. Kudo, K. Sano, S.-I. Sawada, K. Yano, Y. Iwasaki, K. Akiyoshi, M. Mochizuki, and K. Mitsubayashi, Biomed. Microdevices, 13, 603 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. T. Moro, Y. Takatori, K. Ishihara, T. Konno, Y. Takigawa, T. Matsushita, U.-I. Chung, K. Nakamura, and H. Kawaguchi, Nat. Mater., 3, 829 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. T. Moro, Y. Takatori, K. Ishihara, K. Nakamura, and H. Kawaguchi, Clin. Orthop. Relat. R., 453, 58 (2006).

    Article  Google Scholar 

  57. S. Ghosh, S. Abanteriba, S. Wong, R. Brkljača, and S. Houshyar, Mater. Sci. Eng. C, 101, 696 (2019).

    Article  CAS  Google Scholar 

  58. R. R. Palmer, A. L. Lewis, L. C. Kirkwood, S. F. Rose, A. W. Lloyd, T. A. Vick, and P. W. Stratford, Biomaterials, 25, 4785 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. C. Giacomelli, L. Le Men, R. Borsali, J. Lai-Kee-Him, A. Brisson, S. P. Armes, and A. L. Lewis, Biomacromolecules, 7, 817 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. B. Ma, W. Zhuang, G. Liu, and Y. Wang, Regen. Biomater., 5, 15 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. P. E. Milner, M. Parkes, J. L. Puetzer, R. Chapman, M. M. Stevens, P. Cann, and J. R. T. Jeffers, Acta Biomater., 65, 102 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. L. Han, L. Xiang, J. Zhang, J. Chen, J. Liu, B. Yan, and H. Zeng, Langmuir, 34, 11593 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. İ. Türkcan, A. D. Nalbant, E. Bat, and G. Akca, J. Mater. Sci. Mater. Med., 29, 107 (2018).

    Article  PubMed  CAS  Google Scholar 

  64. N. Zhang, K. Zhang, M. D. Weir, D. J. Xu, M. A. Reynolds, Y. Bai, and H. H.K. Xu, Int. J. Oral Sci., 10, 18 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. N. Zhang, K. Zhang, X. Xie, Z. Dai, Z. Zhao, S. Imazato, Y. A. Al-Dulaijan, F. D. Al-Qarni, M. D. Weir, M. A. Reynolds, Y. Bai, L. Wang, and H. H. K. Xu, Nanomaterials, 8, 393 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  66. K. Ishihara, H. Nomura, T. Mihara, K. Kurita, Y. Iwasaki, and N. Nakabayashi, J. Biomed. Mater. Res., 39, 323 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. S. Abraham, S. Brahim, K. Ishihara, and A. Guiseppi-Elie, Biomaterials, 26, 4767 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. T. Shimizu, T. Goda, N. Minoura, M. Takai, and K. Ishihara, Biomaterials, 31, 3274 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. D. Keith, B. Hong, and M. Christensen, A Novel Procedure for the Extraction of Protein Deposits from Soft Hydrophilic Contact Lenses for Analysis, 1997.

  70. E. P. Maziarz, M. J. Stachowski, X. M. Liu, L. Mosack, A. Davis, C. Musante, and D. Heckathorn, Eye Contact Lens, 32, 300 (2006).

    Article  PubMed  Google Scholar 

  71. K. Ishihara, M. Mu, T. Konno, Y. Inoue, and K. Fukazawa, J. Biomater. Sci. Polym. Ed., 28, 884 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. S. Chen, J. Zheng, L. Li, and S. Jiang, J. Am. Chem. Soc., 127, 14473 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. A. Al-Shohani, S. Awwad, P. Tee Khaw, and S. Brocchini, Br. J. Pharm., 2 (2017).

  74. K. Wang, Y. Chen, X. Gong, J. Xia, J. Zhao, and L. Shen, Phys. Chem. Chem. Phys., 20, 12527 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Ting Jiang or Yuan-Hao Howard Hsu.

Additional information

Supporting information

Information is available regarding the original data of the adsorption of lysozyme and methyl oleate by contact lenses, and the physical properties of the MPC/HEMA copolymers. The materials are available via Internet at http://www.springer.com/13233.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: This research was funded by Yung Sheng Optical Co., Ltd.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, WH., Liu, PY., Lu, CJ. et al. Reduction of Physical Strength and Enhancement of Anti-Protein and Anti-Lipid Adsorption Abilities of Contact Lenses by Adding 2-Methacryloyloxyethyl Phosphorylcholine. Macromol. Res. 28, 1064–1073 (2020). https://doi.org/10.1007/s13233-020-8149-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8149-2

Keywords

Navigation