Skip to main content
Log in

Modified hydrogels based on poly(2-hydroxyethyl methacrylate) (pHEMA) with higher surface wettability and mechanical properties

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Soft contact lenses made with poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogels modified with various comonomers such as N-vinyl pyrrolidone, methacrylic acid, glycidyl methacrylate, and glycerol monomethacrylate were prepared to investigate the effect of adding the comonomer on the water content, surface wettability, and tensile modulus. These polymers were synthesized by the free radical polymerization of 2-hydroxyethyl methacrylate (HEMA) with the comonomers in the presence of divinyl benzene used as the crosslinker and azobisisobutyronitrile as the initiator. The chemical structure and transmittance of the hydrogels were analyzed by FTIR and UV/Vis spectrophotometers. The surface wettability and tensile modulus were also studied by measuring the contact angle and tensile modulus with a universal testing machine (UTM). Regarding the properties of water in the hydrogels, the ratio between free to bound water was investigated using differential scanning calorimetry (DSC). As the concentration of crosslinker in the hydrogels increases, the tensile strength also increases, whereas the internal water content and contact angle decrease. The effect of the comonomer composition of the hydrogels was also investigated to optimize the various properties of these comonomers for soft contact lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Casadio, D. H, Brown, T. V. Chirila, H. B. Kraatz, and M. V. Baker, Biomacromolecules, 11, 2949 (2010).

    Article  CAS  Google Scholar 

  2. T. V. Chirila, Y. C. Chen, B. J. Griffin, and I. J. Constable, Polym. Int., 32, 221 (1993).

    Article  CAS  Google Scholar 

  3. J. Elisseeff, Nat. Mater., 7, 271 (2008).

    Article  CAS  Google Scholar 

  4. K. Dusek and J. Somvarsky, Polym. Int., 44, 225 (1997).

    Article  CAS  Google Scholar 

  5. K. Dusek, M. D. Smrckova, and J. Somvarsky, Macromol. Symp., 358, 120 (2015).

    Article  CAS  Google Scholar 

  6. J. Kopecek, Biomacromolecules, 28, 5185 (2007).

    CAS  Google Scholar 

  7. O. B. Üzüm, S. Kundakci, H. B. Durukan, and E. Karadag, J. Appl. Polym. Sci., 105, 2646 (2007).

    Article  Google Scholar 

  8. J. Janacek and F. D. Ferry, J. Polym. Sci. A-2, 10, 345 (1972).

    Article  CAS  Google Scholar 

  9. G. Mabilleau, I. C. Stancu, T. Honoré, G. Legeay, C. Cincu, M. F. Baslé, and D. Chappard, J. Biomed. Mater. Res. A, 77A, 35 (2006).

    Article  CAS  Google Scholar 

  10. Q. Garrett, B. Laycock, and R. W. Garrett, Invest. Ophthalmol. Vis. Sci., 41, 1687 (2000).

    CAS  Google Scholar 

  11. N. A. Peppas, H. J. Moynihan, and L. M. Lucht, J. Biomed. Mater. Res. A, 19, 397 (1985).

    Article  CAS  Google Scholar 

  12. O. Wichterle and D. Lim, Nature, 185, 117 (1960).

    Article  Google Scholar 

  13. S. I. Gordon, US Patent 4123407 (1978).

  14. P. Liu, Z. Xie, F. Zheng, Y. Zhaoa, and Z. Gu, J. Mater. Chem. B., 4, 5222 (2016).

    Article  CAS  Google Scholar 

  15. M. F. Refojo, in Contact Lenses: The CLAO Guide to Basic Science and Clinical Practice, Water imbibition Dabezies, OH, Eds. Grune and Stratton, New York, 1991, pp 1–4.

    Google Scholar 

  16. C. Maldonado-Codina and N. Efron, Optometry in Practice, 4, 101 (2003).

    Google Scholar 

  17. M. Tasaka, S. Suzuki, Y. Ogawa, and M. Kamaya, J. Membr. Sci., 38, 175 (1998).

    Article  Google Scholar 

  18. J. Ostrowska-Czubenko and M. Gierszewska-Druzynska, Carbohydr. Polym., 77, 590 (2009).

    Article  CAS  Google Scholar 

  19. M. Tanaka and A. Mochizuki, J. Biomed. Mater. Res. A, 68, 684 (2004).

    Article  Google Scholar 

  20. K. F. Baker and J. Cattiaux, in Thermal Analysis High Sensitivity Determination of Clustered Water in Polyethylene by Differential Scanning Calorimetry, Du Pont Company Paris, 1977.

    Google Scholar 

  21. I. Tranoudis and N. Efron, Cont Lens Anterior Eye, 27, 177 (2004).

    Article  Google Scholar 

  22. E. García-Millán, S. Koprivnik, and F. Otero-Espinar, J. Int. J. Pharm., 487, 260 (2015).

    Article  Google Scholar 

  23. T. Goda, J. Watanabe, M. Takai, and K. Ishihara, Polymer, 47, 1390 (2006).

    Article  CAS  Google Scholar 

  24. I. Tranoudis and N. Efron, Cont Lens Anterior Eye, 27, 193 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Suk Lee or Yang-il Huh.

Additional information

Acknowledgments: This work was supported by the Human Resource Training Program for Regional Innovation and Creativity through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (NRF-2014H1C1A1067014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, E., Kumar, S., Lee, J. et al. Modified hydrogels based on poly(2-hydroxyethyl methacrylate) (pHEMA) with higher surface wettability and mechanical properties. Macromol. Res. 25, 704–711 (2017). https://doi.org/10.1007/s13233-017-5068-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5068-y

Keywords

Navigation