Skip to main content
Log in

Experimental Investigation of the Hybrid Epoxy-Silane Coating for Enhanced Protection against the Corrosion of Aluminum Alloy AA7075 Frame in Solar Cells

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The anticorrosion properties of epoxy-silane hybrid coated aluminium (Al) alloy were investigated using electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) in natural seawater. The resistances of charge transfer (Rct) and the film (Rf) of 7075 aluminum alloy had higher values at 1 day, which decreased slowly over the testing time. The release of Al3+ ion into the solution from the surface of the anode and the consumption of oxygen dissolved at the cathode surface was monitored by SECM. It was measured that the Al3+ dissolution was hindered at the scratch of coated 7075 aluminum alloy because of the higher resistance to dissolution of anode. Analysis by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) proved that Mg, Zn, and Cu were enriched at the scratch of coated 7075 Al alloy. The nanometer level layers of oxide containing Mg, Zn, Cu, and Al in 7075 Al alloy were identified by focused ion beam-transmission electron spectroscopy (FIB-TEM) analysis. These accumulated metal complexes possess high corrosion resistance against the corrosion of the coated Al alloy. The hybrid nanocomposite coated 7075 aluminum alloy showed an enhanced protection against the corrosion. The reinforcement of 3-aminopropyltriethoxy silane (APTES) with epoxy coatings resulted in a good adhesion strength, less oxygen permeability, and excellent protection against the corrosion of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. A. Forsgren, Corrosion Control Through Organic Coatings, 1st ed., Taylor & Francis Group, Boca Ratón, 2006.

    Book  Google Scholar 

  2. E. Legghe, E. Aragon, L. Bélec, A. Margaillan, and D. Melot, Prog. Org. Coat., 66, 276 (2009).

    Article  CAS  Google Scholar 

  3. A. Boag, A. E. Hughes, N. C. Wilson, A. Torpy, C. M. MacRae, A. M. Glenn, and T. H. Muster, Corros. Sci., 51, 1565 (2009).

    Article  CAS  Google Scholar 

  4. F. M. Queiroz, M. Magnani, I. Costa, and H. G. De Melo, Corros. Sci., 50, 2646 (2008).

    Article  CAS  Google Scholar 

  5. A. Boag, A. E. Hughes, A. M. Glenn, T. H. Muster, and D. McCulloch, Corros. Sci., 53, 17 (2011).

    Article  CAS  Google Scholar 

  6. J. A. DeRose, T. Suter, A. Balkowiec, J. Michalski, K. J. Kurzydlowski, and P. Schmutz, Corros. Sci., 55, 313 (2012).

    Article  CAS  Google Scholar 

  7. S.-H. Choi and B.-M. Zhang Newby, Surf. Sci., 600, 1391 (2006).

    Article  CAS  Google Scholar 

  8. A. Alghunaim, E. T. Brink, and B.-M. Zhang Newby, Polymer, 101, 139 (2016).

    Article  CAS  Google Scholar 

  9. D. Zhu and W. J. van Ooij, Prog. Org. Coat., 49, 42 (2004).

    Article  CAS  Google Scholar 

  10. Y. Zhang, M. Zhao, J. Zhang, Q. Shao, J. Li, H. Li, B. Lin, M. Yu, and S. Chen, J. Polym. Res., 25, 130 (2018).

    Article  Google Scholar 

  11. W. Brostow, M. Dutta, and P. Rusek, Eur. Polym. J., 46, 2181 (2010).

    Article  CAS  Google Scholar 

  12. M. Echeverría, C. M. Abreu, K. Lau, and C. A. Echeverría, Prog. Org. Coat., 92, 29 (2016).

    Article  Google Scholar 

  13. I. Díaz, B. Chico, D. De la Fuente, J. Simancas, J. M. Vega, and M. Morcillo, Prog. Org. Coat., 69, 278 (2010).

    Article  Google Scholar 

  14. H. Shi, W. Liu, M. Yang, X. Liu, Y. Xie, and Z. Wang, Macromol. Res., 27, 412 (2019).

    Article  CAS  Google Scholar 

  15. J. Song, G. Wu, J. Shi, Y. Ding, G. Chen, and Q. Li, Macromol. Res., 18, 944 (2010).

    Article  CAS  Google Scholar 

  16. S.-J. Park, G.-Y. Heo, F.-L. Jin, and K. Y. Rhee, Macromol. Res., 23, 134 (2015).

    Article  CAS  Google Scholar 

  17. S. Ma, W. Q. Liu, D. Yu, and Z. F. Wang, Macromol. Res., 18, 22 (2010).

    Article  CAS  Google Scholar 

  18. W. Liu, S. Ma, Z. Wang, C. Hu, and C. Tang, Macromol. Res., 18, 853 (2010).

    Article  Google Scholar 

  19. F. Brusciotti, D. V. Snihirova, H. Xue, M. F. Montemor, S. V. Lamaka, and M. G. S. Ferreira, Corros. Sci., 67, 82 (2013).

    Article  CAS  Google Scholar 

  20. S. S. Pathak and A. S. Khanna, Prog. Org. Coat., 65, 288 (2009).

    Article  CAS  Google Scholar 

  21. D. Xue and W. J. Van Ooij, Prog. Org. Coat., 76, 1095 (2013).

    Article  CAS  Google Scholar 

  22. M. F. Montemor, Surf. Coat. Technol., 258, 17 (2014).

    Article  CAS  Google Scholar 

  23. Y. Zhang, Y. Shao, T. Zhang, G. Meng, and F. Wang, Corros. Sci., 53, 3747 (2011).

    Article  CAS  Google Scholar 

  24. M. A. Deyab, R. Essehli, B. El Bali, and M. Lachkar, RSC Adv., 7, 55074 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Raj Xavier.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, J.R. Experimental Investigation of the Hybrid Epoxy-Silane Coating for Enhanced Protection against the Corrosion of Aluminum Alloy AA7075 Frame in Solar Cells. Macromol. Res. 28, 501–509 (2020). https://doi.org/10.1007/s13233-020-8065-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-020-8065-5

Keywords

Navigation