Skip to main content
Log in

Electrospun Twin Fibers Encumbered with Intrinsic Antioxidant Activity as Prospective Bandage

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Our investigation for the first time explores the possibility of fabrication of a Capsaicin/polyurethane-based bioactive wound dressing. A micro/nanofibrous bandage was synthesized by electrospinning polyurethane supplemented with natural anti-inflammatory agent, Capsaicin. Herein, the best concentration (3%) of Capsaicin in polyurethane to get a consistent solution was standardized in order to acquire the composite micro/nanofibrous dressing. The as-spun bandage has been investigated by scanning electron microscopy and Fourier transform infrared spectroscopy, and biocompatibility of muscle cells on the bioactive bandage was also examined. Free radical scavenging activity of the fabricated micro/nanofiber bandage was estimated using 2,2-diphenyl-1-picrylhydrazyl assay. Inclusion of Capsaicin in polyurethane transformed the morphology as well as dimension of the fibers. Anti-oxidant wound bandage with diameters around 150–500 nm was fabricated by physical unification of polyurethane with natural Capsaicin. Here, polyurethane was used as a foundation polymer, which was blended with Capsaicin to attain desirable characteristics such as better anti-oxidant activity, hydrophilicity and excellent cell attachment. The polyurethane wound bandage possesses enlarged surface, proscribed evaporation, and fluid drainage ability. These results suggest the beneficial influence of antioxidant Capsaicin on wound repairing process. Therefore, a biologically active, natural compounds such as Capsaicin is material of choice for fabrication of future wound dressings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-P. Chen and Y. Chiang, J. Nanosci. Nanotechnol., 10, 7560 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. A. R. Unnithan, G. Gnanasekaran, Y. Sathishkumar, Y. S. Lee, and C. S. Kim, Carbohyd. Polym., 102, 884 (2014).

    Article  CAS  Google Scholar 

  3. S. J. Lee, D. N. Heo, J.-H. Moon, H. N. Park, W.-K. Ko, M. S. Bae, J. B. Lee, S. W. Park, E.-C. Kim, C. H. Lee, B.-Y. Jung, and I. K. Kwon, J. Nanosci. Nanotechnol., 14, 7488 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. M. S. Khil, D. I. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, J. Biomed. Mater. Res. B, 67B, 675 (2003).

    Article  CAS  Google Scholar 

  5. B. M. Illigens and C. H. Gibbons, PloS One, 8, e54760 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. S. O. Udegbunam, R. I. Udegbunam, T. O. Nnaji, M. U. Anyanwu, R. O. Kene, and S. M. Anika, J. Intercult. Ethnopharmacol., 4, 239 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. K. S. Chen, P. N. Chen, Y. S. Hsieh, C. Y. Lin, Y. H. Lee, and S. C. Chu, Chem.-Biol. Interact., 228, 35 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. M. Materska, M. Konopacka, J. Rogolinski, and K. Slosarek, Food Chem., 168, 546 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. T. Amna, M. S. Hassan, F. A. Sheikh, H. K. Lee, K. S. Seo, D. Yoon, and I. H. Hwang, Appl. Microbiol. Biot., 97, 1725 (2013).

    Article  CAS  Google Scholar 

  10. S. T. Russell and M. J. Tisdale, Mol. Cell. Biochem., 330, 171 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. T. Amna, M. S. Hassan, W. S. Shin, H. Van Ba, H. K. Lee, M. S. Khil, and I. H. Hwang, Colloid. Surf. B, 101, 424 (2013).

    Article  CAS  Google Scholar 

  12. W. Brand-Williams, M. E. Cuvelier, and C. Berset, LWT-Food Sci. Technol., 28, 25 (1995).

    Article  CAS  Google Scholar 

  13. E. J. Garcia, T. L. C. Oldoni, S. M. D. Alencar, A. Reis, A. D. Loguercio, and R. H. M. Grande, Braz. Dent. J., 23, 22 (2012).

    Article  PubMed  Google Scholar 

  14. H. W. Yang, K. J. Hwang, H. C. Kwon, H. S. Kim, K. W. Choi, and K. S. Oh, Hum. Reprod., 13, 998 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. T. K. Giri, P. Mukherjee, T. K. Barman, and S. Maity, Int. J. Biol. Macromol., 88, 236 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. R. Qi, R. Guo, M. Shen, X. Cao, L. Zhang, J. Xu, J. Yu, and X. Shi, J. Mater. Chem., 20, 10622 (2010).

    Article  CAS  Google Scholar 

  17. T. Amna, M. S. Hassan, J. Yang, M.-S. Khil, K.-D. Song, J.-D. Oh, and I. Hwang, Int. J. Nanomedicine, 9, 891 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  18. L. D. Tijing, M. T. G. Ruelo, A. Amarjargal, H. R. Pant, C.-H. Park, D. W. Kim, and C. S. Kim, Chem. Eng. J., 197, 41 (2012).

    Article  CAS  Google Scholar 

  19. R. L. Teku, C. K. Mylangam, and V. Kolapalli, Wor. J. Pharm. Pharm. Sci., 5, 1017 (2015).

    Google Scholar 

  20. P. Vashisth, N. Kumar, M. Sharma, and V. Pruthi, Biotechnol. Rep., 8, 36 (2015).

    Article  Google Scholar 

  21. A. Saklani and S. K. Kutty, Drug Discov. Today, 13, 161 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. R. Geethalakshmi, C. Sakravarthi, T. Kritika, M. Arul Kirubakaran, and D. Sarada, Biomed. Res. Int., 2013, 607109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. W. Pyun, J. H. Kim, K. H. Han, G. E. Hong, and C. H. Lee, Biofactors, 40, 494 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. D. Yaffe and O. Saxel, Nature, 270, 725 (1977).

    Article  CAS  Google Scholar 

  25. F. Horio, H. Sakurai, Y. Ohsawa, S. Nakano, M. Matsukura, and I. Fujii, eNeurologicalSci, 6, 9 (2017).

    Article  PubMed  Google Scholar 

  26. S. F. Albaayit, Y. Abba, A. Rasedee, and N. Abdullah, Drug. Des. Dev. Ther., 9, 3507 (2015).

    Google Scholar 

  27. D. Altiok, E. Altiok, and F. Tihminlioglu, J. Mater. Sci.-Mater. M., 21, 2227 (2010).

    Article  CAS  Google Scholar 

  28. C. M. Srivastava and R. Purwar, Macromol. Res., 26, 872 (2018).

    Article  CAS  Google Scholar 

  29. M. Suryamathi, C. Ruba, P. Viswanathamurthi, V. Balasubramanian, and P. Perumal, Macromol. Res., 27, 55 (2019).

    Article  CAS  Google Scholar 

  30. R. Rosic, P. Kocbek, J. Pelipenko, J. Kristl, and S. Baumgartner, Acta Pharmaceut, 63, 295 (2013).

    Article  CAS  Google Scholar 

  31. A. Rusak and Z. Rybak, Polim. Med., 43, 199 (2013).

    PubMed  Google Scholar 

  32. X. Chen, G. Zhang, Q. Zhang, X. Zhan, and F. Chen, Ind. Eng. Chem. Res., 54, 3813 (2015).

    Article  CAS  Google Scholar 

  33. M.-N. Zhang, X.-H. Piao, Z. Li, Y.-T. Zhang, J.-H. Zhao, and N.-P. Feng, Chinese J. Exper. Traditional Medical Formulae, 17, 006 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Touseef Amna or Inho Hwang.

Additional information

Acknowledgments: This work was supported in part by a grant from the Next Generation Bio-green 21 (PJ013169), Rural Development Administration, Republic of Korea. The authors also extend their appreciation to the Deanship of Scientific Research at Albaha University for research grant (Proposal No. 54-1436) to help in research work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amna, T., Gharsan, F.N., Shang, K. et al. Electrospun Twin Fibers Encumbered with Intrinsic Antioxidant Activity as Prospective Bandage. Macromol. Res. 27, 663–669 (2019). https://doi.org/10.1007/s13233-019-7088-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7088-2

Keywords

Navigation