Skip to main content

Advertisement

Log in

Mechanism of attenuation by β-hydroxy-β-methylbutyrate of muscle protein degradation induced by lipopolysaccharide

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The mechanism of the effect of β-hydroxy-β-methylbutyrate (HMB) on protein degradation induced by lipopolysaccharide (LPS) has been evaluated in murine myotubes. HMB (50 μM) completely attenuated total protein degradation induced by LPS (1–100 ng/ml), formation of reactive oxygen species (ROS) and activation of caspase-3/-8. Specific inhibitors of caspase-3/-8 completely attenuated ROS production, total protein degradation and the LPS-induced autophosphorylation of dsRNA-dependent protein kinase (PKR). Protein degradation in response to LPS or ROS production was not seen in myotubes transfected with mutant PKRΔ6, suggesting that PKR was involved in ROS production, which was essential for total protein degradation. This was confirmed using the antioxidant butylated hydroxytoluene (BHT) which completely attenuated protein degradation in response to LPS. The link between PKR activation and ROS production was mediated through p38 mitogen-activated protein kinase (MAPK), which was activated by LPS in myotubes transfected with wild-type PKR, but not PKRΔ6. Both ROS production and protein degradation induced by LPS were completely attenuated by SB203580, a specific inhibitor of p38MAPK. This suggests that LPS induces protein degradation through a signalling cascade involving activation of caspase-3/-8, activation of PKR and production of ROS through p38MAPK, and that this process is attenuated by HMB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Acharyya S, Ladner KJ, Nelsen LL et al (2004) Cancer cachexia is upregulated by selective targeting of skeletal muscle gene products. J Clin Invest 114:370–378

    CAS  PubMed  Google Scholar 

  2. Gomes MD, Lecker SH, Jagoe RT et al (2001) Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 98:14440–14445. doi:10.1073/pnas.251541198

    Article  CAS  PubMed  Google Scholar 

  3. Bodine SC, Latres E, Baumhueter S et al (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294:1704–1707. doi:10.1126/science.1065874

    Article  CAS  PubMed  Google Scholar 

  4. Clarke BA, Drujan D, Willis MS et al (2007) The E3 ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6:376–387. doi:10.1016/j.cmet.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  5. Cai D, Frantz JD, Tawa NE Jr et al (2004) IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 119:285–298. doi:10.1016/j.cell.2004.09.027

    Article  CAS  PubMed  Google Scholar 

  6. Sandri M, Sandri C, Gilbert A et al (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117:399–412. doi:10.1016/S0092-8674(04)00400-3

    Article  CAS  PubMed  Google Scholar 

  7. Tisdale MJ (2007) Is there a common mechanism linking muscle wasting in various disease types? Curr Opin Support Palliat Care 1:287–292. doi:10.1097/SPC.0b013e3282f35238

    Article  PubMed  Google Scholar 

  8. Li Y-P, Chen Y, John J et al (2005) TNF-α acts via p38MPAK to stimulate expression of the ubiquitin ligase atrogin 1/MAFbx in skeletal muscle. FASEB J 19:362–370. doi:10.1096/fj.04-2364com

    Article  CAS  PubMed  Google Scholar 

  9. Eley HL, Tisdale MJ (2007) Skeletal muscle atrophy, a link between depression of protein synthesis and increase in degradation. J Biol Chem 282:7087–7097. doi:10.1074/jbc.M610378200

    Article  CAS  PubMed  Google Scholar 

  10. Eley HL, Russell ST, Baxter JW et al (2007) Signalling pathways initiated by β-hydroxy-β-methylbutyrate to attenuate the depression of protein synthesis in skeletal muscle in response to cachectic stimuli. Am J Physiol 293:E293–E931

    Google Scholar 

  11. May PE, Barber A, D’Olimpo JT et al (2002) Reversal of cancer-related wasting using oral supplementation with a combination of β-hydroxy-β-methylbutyrate, arginine and glutamine. Am J Surg 183:471–479. doi:10.1016/S0002-9610(02)00823-1

    Article  CAS  PubMed  Google Scholar 

  12. Clark RH, Feleke G, Din M et al (2000) Nutritional treatment for acquired immunodeficiency virus-associated wasting using β-hydroxy-β-methylbutyrate, glutamine, and arginine: a randomised, double blind, placebo-controlled study. J Parent Ent Nutr 24:133–139. doi:10.1177/0148607100024003133

    Article  CAS  Google Scholar 

  13. Nissen S, Sharp R, Ray M et al (1996) Effect of leucine metabolite β-hydoxy-β-methylbutyrate on muscle metabolism during resistance-exercise training. J Appl Physiol 81:2095–2104

    CAS  PubMed  Google Scholar 

  14. Dehoux MJ, van Beneden RP, Gernandez-Celemin L, Lause PL, Thissen JP (2003) Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett 544:214–217. doi:10.1016/S0014-5793(03)00505-2

    Article  CAS  PubMed  Google Scholar 

  15. Claives GHA, George BC, Villee CA, Saravis CA (1983) Muscle proteolysis induced by a circulating peptide in patients with sepsis or trauma. N Engl J Med 308:545–552

    Article  Google Scholar 

  16. Smith HJ, Wyke SM, Tisdale MJ (2004) Mechanism of the attenuation of proteolysis-inducing factor stimulated protein degradation in muscle by β-hydroxy-β-methylbutyrate. Cancer Res 64:8731–8735. doi:10.1158/0008-5472.CAN-04-1760

    Article  CAS  PubMed  Google Scholar 

  17. Russell ST, Eley HL, Tisdale MJ (2007) Role of reactive oxygen species in protein degradation in murine myotubes induced by proteolysis-inducing factor and angiotensin II. Cell Signal 19:1797–1806. doi:10.1016/j.cellsig.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Du J, Wang X, Miereles C et al (2004) Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 113:115–123

    CAS  PubMed  Google Scholar 

  19. Kiselev AF, Akopian TN, Castillo V, Goldberg AL (1999) Proteasome active sites allosterically regulate each other, suggesting a cyclical bite-chew mechanism for protein breakdown. Mol Cell 4:395–402. doi:10.1016/S1097-2765(00)80341-X

    Article  Google Scholar 

  20. Lee JH, Park EJ, Kim OS et al (2005) Double-stranded RNA-activated protein kinase is required for the LPS-induced activation of STAT1 inflammatory signaling in rat brain glial cells. Glia 50:66–79. doi:10.1002/glia.20156

    Article  PubMed  Google Scholar 

  21. Koromilas AE, Roy S, Barber GN et al (1992) Malignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science 257:1685–1689. doi:10.1126/science.1382315

    Article  CAS  PubMed  Google Scholar 

  22. Hayama M, Inque R, Akiba S, Salo T (2002) ERK and p38MAPK kinase are involved in arachidonic acid release induced by H2O2 and PDGF in mesangial cells. Am J Physiol 282:F485–F491

    CAS  Google Scholar 

  23. Silva AM, Whitmore M, Xu Z et al (2004) Protein kinase R (PKR) interacts with and activates mitogen-activated protein kinase kinase 6 (MKK6) in response to double-stranded RNA stimulation. J Biol Chem 279:37670–37676. doi:10.1074/jbc.M406554200

    Article  CAS  PubMed  Google Scholar 

  24. Saelens X, Kalni M, Vandenabeele P (2001) Translation inhibition in apoptosis. Caspase-dependent PKR activation and eIF2α phosphorylation. J Biol Chem 276:41620–41628. doi:10.1074/jbc.M103674200

    Article  CAS  PubMed  Google Scholar 

  25. Suen K-C, Yu M-S, So K-F, Chang RC-C, Hugon J (2003) Upstream signaling pathways leading to the activation of double-stranded RNA-dependent serine/threonine protein kinase in β-amyloid peptide neurotoxicity. J Biol Chem 278:49819–49827. doi:10.1074/jbc.M306503200

    Article  CAS  PubMed  Google Scholar 

  26. Prostko CR, Dholakia JN, Brostrom MA, Brostrom CD (1995) Activation of the double-stranded RNA-regulated protein kinase by depletion of endoplasmic reticular calcium stores. J Biol Chem 270:6211–6215. doi:10.1074/jbc.270.8.4127

    Article  CAS  PubMed  Google Scholar 

  27. Wray CJ, Sun X, Gang GI, Hasselgren PO (2002) Dantrolene downregulates the gene expression and activity of the ubiquitin-proteasome proteolytic pathway in septic skeletal muscle. J Surg Res 104:82–87. doi:10.1006/jsre.2002.6416

    Article  CAS  PubMed  Google Scholar 

  28. Menconi MJ, Wei W, Yang H et al (2004) Treatment of cultured myotubes with the calcium ionophore A23187 increases proteasome activity via a CaMK II-caspase-calpain-dependent mechanism. Surgery 136:135–142. doi:10.1016/j.surg.2004.03.014

    Article  PubMed  Google Scholar 

  29. Wei W, Fareed M, Evenson A et al (2005) Sepsis stimulates calpain activity in skeletal muscle by decreasing calpastatin activity but does not activate caspase-3. Am J Physiol 288:R580–R590

    CAS  Google Scholar 

  30. Kumar A, Haque J, Lacoste J et al (1994) Double-stranded RNA-dependent protein kinase activates transcription factor NF-κB by phosphorylating IκB. Proc Natl Acad Sci USA 91:6288–6292. doi:10.1073/pnas.91.14.6288

    Article  CAS  PubMed  Google Scholar 

  31. Jiang H-Y, Wek SA, McGrath BC et al (2003) Phosphorylation of the α subunit of eukaryotic initiation factor 2 is required for activation of NF-κB in response to diverse cellular stresses. Mol Cell Biol 23:5651–5663. doi:10.1128/MCB.23.16.5651-5663.2003

    Article  CAS  PubMed  Google Scholar 

  32. Karen A, Tamir Y, Bengal E (2006) The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 252:224–230. doi:10.1016/j.mce.2006.03.017

    Article  CAS  Google Scholar 

  33. Smith HJ, Lorite MJ, Tisdale MJ (1999) Effect of a cancer cachectic factor on protein synthesis/degradation in murine C2C12 myoblasts: modulation by eicosapentaenoic acid. Cancer Res 59:5507–5513

    CAS  PubMed  Google Scholar 

  34. Woo C-H, Eom Y-W, Yoo M-H, You H-J et al (2000) Tumor necrosis factor-α generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade. J Biol Chem 275:32357–32362. doi:10.1074/jbc.M005638200

    Article  CAS  PubMed  Google Scholar 

  35. DiMarco S, Mazroui R, Dallaire P et al (2005) NF-κB-mediated MyoD decay during muscle wasting requires nitric oxide release. Mol Cell Biol 25:6533–6545. doi:10.1128/MCB.25.15.6533-6545.2005

    Article  CAS  Google Scholar 

  36. Russell ST, Rajani S, Dhadda RS, Tisdale MJ (2009) Mechanism of induction of muscle protein loss by hyperglycaemia. Exp Cell Res 315:16–25. doi:10.1016/j.yexcr.2008.10.002

    Article  CAS  PubMed  Google Scholar 

  37. Busquets S, Deans C, Figueras M et al (2007) Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin Nutr 26:614–618. doi:10.1016/j.clnu.2007.06.005

    Article  CAS  PubMed  Google Scholar 

  38. Shiokawa D, Kobayashi T, Tanuma S (2002) Involvement of DNase γ in apoptosis associated with myogenic differentiation of C2C12 cells. J Biol Chem 277:31031–31037. doi:10.1074/jbc.M204038200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ross Nutrition/Abbott Laboratories.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Tisdale.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, S.T., Tisdale, M.J. Mechanism of attenuation by β-hydroxy-β-methylbutyrate of muscle protein degradation induced by lipopolysaccharide. Mol Cell Biochem 330, 171–179 (2009). https://doi.org/10.1007/s11010-009-0130-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0130-5

Keywords

Navigation