Skip to main content
Log in

Poly(methyl vinyl ether-co-maleic acid) Hydrogels Containing Cyclodextrins and Tween 85 for Potential Application as Hydrophobic Drug Delivery Systems

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Hydrogels have been extensively investigated as a platform for drug delivery. However, their use for the delivery of hydrophobic drugs has been limited by their incompatibility with hydrophobic drug molecules. The chemical modification of the structure of the hydrogels to include hydrophobic moieties has been proven to be a good alternative to increase the stability and solubility of hydrophobic drugs in the polymer matrix of the hydrogel. The inclusion of hydroxypropyl-β-cyclodextrins (HPBCD) and Tween® 85 (T85) within hydrogel matrices has the potential to improve hydrophobic drug loading and release. HPBCD have the ability to host hydrophobic drug molecules in their cone-like structure, forming inclusion complexes through host-guest interactions. On the other hand, T85 is an amphiphilic molecule and, consequently, has the potential to increase hydrophilic drug loading within the hydrogels. In the present work, a new type of hydrogel made from poly(methyl vinyl ether-co-maleic acid) (GAN) and poly(ethylene glycol) (PEG) containing T85 and HPBCD was synthesized for hydrophobic drug release. Hydrogels were based on GAN crosslinked (PEG) and HPBCD and/or T85 via an esterification in the solid state (solvent free). The synthesised hydrogels were characterised using Fourier transform infrared (FTIR) spectroscopy, swelling studies and contact angle measurements. The hydrogels showed swellings ranging from 140 to 180%. The inclusion of T85 in the hydrogels improved the wettability of the materials. On the other hand, the inclusion of HPBCD within the hydrogels decreased the wettability as the contact angle between the hydrogels and water increased with the HPBCD content. Finally, the materials were loaded with an ophthalmic drug, dexamethasone (DX). HPBC-containing hydrogels showed a higher DX uptake and, consequently, also a higher capacity of DX release. On the other hand, T85 containing hydrogels did not show any improvement over the hydrogels containing only GAN and PEG. The hydrogels were able to provide sustained DX release over periods of 6 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Caló and V. V. Khutoryanskiy, Eur. Polym. J., 65, 252 (2015).

    Article  CAS  Google Scholar 

  2. N. Peppas, J. Hilt, A. Khademhosseini, and R. Langer, Adv Mater, 18, 1345 (2006).

    Article  CAS  Google Scholar 

  3. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pharm. Biopharm., 50, 27 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. T. Hoare and D. Kohane, Polymer, 49, 1993 (2008).

    Article  CAS  Google Scholar 

  5. S. Chatterjee, P. C. L. Hui, and C. W. Kan, Polymers, 10, 480 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  6. L. S. Liu, J. Kost, F. Yan, and R. C. Spiro, Polymers, 4, 997 (2012).

    Article  CAS  Google Scholar 

  7. M. F. Akhtar, M. Hanif, and N. M. Ranjha, Saudi Pharm. J., 24, 554 (2016).

    Article  PubMed  Google Scholar 

  8. E. Larrañeta and J. R. Isasi, Carbohydr. Polym., 102, 674 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. T. Li, B. Kumru, N. Al Nakeeb, J. Willersinn, and B. V. K. J. Schmidt, Polymers, 10, 576 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  10. I. Antoniuk, D. Kaczmarek, A. Kardos, I. Varga, and C. Amiel, Polymers, 10, 566 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  11. C. A. Estevez, J. R. Isasi, E. Larraneta, and I. Velaz, Beilstein J. Org. Chem., 10, 3127 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. E. Larrañeta, S. Stewart, M. Ervine, R. Al-Kasasbeh, and R. F. Donnelly, J. Funct. Biomater., 9, 13 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  13. M. McKenzie, D. Betts, A. Suh, K. Bui, L. D. Kim, and H. Cho, Molecules, 20, 20397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D. Gu, A. J. O’Connor, G. G. H. Qiao, and K. Ladewig, Expert Opin. Drug Deliv., 14, 879 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. A. Fahr and X. Liu, Expert Opin. Drug Deliv., 4, 403 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. M. Pekar, Front. Mater., 1, 35 (2015).

    Google Scholar 

  17. E. Larrañeta, M. Imízcoz, J. X. Toh, N. J. Irwin, A. Ripolin, A. Perminova, J. Domíguez-Robles, A. Rodríguez, and R. F. Donnelly, ACS Sustainable Chem. Eng., 6, 9037 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. K. H. Hong, Y. S. Jeon, D. J. Chung, and J. H. Kim, Macromol. Res., 18, 204 (2010).

    Article  CAS  Google Scholar 

  19. S. Shukla, A. K. Bajpai, and J. Bajpai, Macromol. Res., 11, 273 (2003).

    Article  CAS  Google Scholar 

  20. E. Larraneta, L. Barturen, M. Ervine, and R. F. Donnelly, Int. J. Pharm., 538, 147 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. G. Gonzalez-Gaitano, J. R. Isasi, I. Velaz, and A. Zornoza, Curr. Pharm. Des., 23, 411 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. E. M. Martin Del Valle, Process Biochem., 39, 1033 (2004).

    Article  CAS  Google Scholar 

  23. E. Larrañeta, C. Martínez-Ohárriz, I. Vélaz, A. Zornoza, R. Machín, and J. R. Isasi, J. Pharm. Sci., 103, 197 (2014).

    Article  CAS  PubMed  Google Scholar 

  24. J. B. Xiao, X. Q. Chen, H. Z. Yu, and M. Xu, Macromol. Res., 14, 443 (2006).

    Article  CAS  Google Scholar 

  25. P. Ojer, L. Neutsch, F. Gabor, J. M. Irache, and A. López de Cerain, J. Biomed. Nanotechnol., 9, 1891 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. E. Larrañeta, M. Henry, N. J. Irwin, J. Trotter, A. A. Perminova, and R. F. Donnelly, Carbohydr. Polym., 181, 1194 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. E. M. Vicente-Perez, E. Larraneta, M. T. C. McCrudden, A. Kissenpfennig, S. Hegarty, H. O. McCarthy, and R. F. Donnelly, Eur. J. Pharm. Biopharm., 117, 400 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. L. Ruiz-Gaton, S. Espuelas, E. Larraneta, I. Reviakine, L. A. Yate, and J. M. Irache, Eur. J. Pharm. Sci., 118, 165 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. R. F. Donnelly, T. R. R. Singh, M. J. Garland, K. Migalska, R. Majithiya, C. M. McCrudden, P. L. Kole, T. M. T. Mahmood, H. O. McCarthy, and A. D. Woolfson, Adv. Funct. Mater., 22, 4879 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. J. Domínguez-Robles, M. S. Peresin, T. Tamminen, A. Rodríguez, E. Larrañeta, and A. S. Jääskeläinen, Int. J. Biol. Macromol., 115, 1249 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. M. Sclavons, P. Franquinet, V. Carlier, G. Verfaillie, I. Fallais, R. Legras, M. Laurent, and F. C. Thyrion, Polymer, 41, 1989 (2000).

    Article  CAS  Google Scholar 

  32. B. Yang, C. Wei, Y. Yang, Q. Wang, and S. Li, Drug Dev. Ind. Pharm., 44, 1417 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. M. C. Lin and T. F. Svitova, Optom.Vis. Sci., 87, 440 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. C. F. Komives, D. E. Osborne, and A. J. Russell, J. Phys. Chem., 98, 369 (1994).

    Article  CAS  Google Scholar 

  35. X. Li, Y. Zhao, K. Wang, L. Wang, X. Yang, and S. Zhu, PLoS One, 12, e0189778 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. F. dos Santos, C. Alvarez-Lorenzo, M. Silva, L. Balsa, J. Couceiro, J. J. Torres-Labandeira, and A. Concheiro, Biomaterials, 30, 1348 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. R. Machín, J. R. Isasi, and I. Vélaz, Carbohydr. Polym., 87, 2024 (2011).

    Article  CAS  Google Scholar 

  38. J. K. Kristinsson, H. Fridriksdottir, S. Thorisdottir, A. M. Sigurdardottir, E. Stefansson, and T. Loftsson, Invest. Ophthalmol. Vis. Sci., 37, 1199 (1996).

    CAS  PubMed  Google Scholar 

  39. M. Argenziano, C. Dianzani, B. Ferrara, S. Swaminathan, A. Manfredi, E. Ranucci, R. Cavalli, and P. Ferruti, Gels, 3, 22 (2017).

    Article  PubMed Central  Google Scholar 

  40. D. Lucio, J. M. Irache, M. Font, and M. C. Martinez-Oharriz, Int.J.Pharm., 530, 377 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. D. Lucio, J. M. Irache, M. Font, and M. C. Martinez-Oharriz, Int. J. Pharm., 519, 263 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. A. Beig, R. Agbaria, and A. Dahan, PLoS One, 8, e68237 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. Usayapant, A. H. Karara, and M. M. Narurkar, Pharm. Res., 8, 1495 (1991).

    Article  CAS  PubMed  Google Scholar 

  44. R. Iacovino, J. V. Caso, F. Rapuano, A. Russo, M. Isidori, M. Lavorgna, G. Malgieri, and C. Isernia, Molecules, 17, 6056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. J. Wang, Z. Zhu, X. Jin, Z. Li, Y. Shao, and Z. Shao, Polymers, 8, 93 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  46. R. Machín, J. R. Isasi, and I. Vélaz, Eur. Polym. J., 49, 3912 (2013).

    Article  CAS  Google Scholar 

  47. K. Kesavan, S. Kant, P. N. Singh, and J. K. Pandit, Curr. Eye Res., 36, 918 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. J. Kim, C. C. Peng, and A. Chauhan, J.Control.Release, 148, 110 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. A. Boone, A. Hui, and L. Jones, Eye Contact Lens, 35, 260 (2009).

    Article  PubMed  Google Scholar 

  50. G. Guidi, T. C. Hughes, M. Whinton, M. A. Brook, and H. Sheardown, J. Biomater. Appl., 29, 222 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. D. Nguyen, A. Hui, A. Weeks, M. Heynen, E. Joyce, H. Sheardown, and L. Jones, Materials (Basel), 5, 684 (2012).

    Article  CAS  Google Scholar 

  52. K. M. Brothers, A. C. Nau, E. G. Romanowski, and R. M. Shanks, Cornea, 33, 1083 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. F. Bian, C. S. Shin, C. Wang, S. C. Pflugfelder, G. Acharya, and C. S. De Paiva, Invest. Ophthalmol. Vis. Sci., 57, 3222 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Z. Zhang, X. Wei, J. Gao, Y. Zhao, Y. Zhao, L. Guo, C. Chen, Z. Duan, P. Li, and L. Wei, Int. J. Mol. Sci., 17, 411 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. M. Hamalainen, R. Nieminen, I. Uurto, J. P. Salenius, M. Kellomaki, J. Mikkonen, A. Kotsar, T. Isotalo, L. J. Teuvo Tammela, M. Talja, and E. Moilanen, Basic Clin. Pharmacol. Toxicol., 112, 296 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. K. Dong, Y. Dong, C. You, W. Xu, X. Huang, Y. Yan, L. Zhang, K. Wang, and J. Xing, Drug Deliv., 23, 174 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. N. T. Tung, V. T. Huyen, and S. C. Chi, Arch. Pharm. Res., 38, 1999 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. S. Zhang, J. Ermann, M. D. Succi, A. Zhou, M. J. Hamilton, B. Cao, J. R. Korzenik, J. N. Glickman, P. K. Vemula, L. H. Glimcher, G. Traverso, R. Langer, and J. M. Karp, Sci. Transl. Med., 7, 300ra128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eneko Larrañeta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larrañeta, E., Domínguez-Robles, J., Coogan, M. et al. Poly(methyl vinyl ether-co-maleic acid) Hydrogels Containing Cyclodextrins and Tween 85 for Potential Application as Hydrophobic Drug Delivery Systems. Macromol. Res. 27, 396–403 (2019). https://doi.org/10.1007/s13233-019-7074-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7074-8

Keywords

Navigation