Skip to main content
Log in

Photochemical Studies and Photoinduced Antibacterial Properties of Silver Nanoparticle-Encapsulated Biomacromolecule Bovine Serum Albumin Functionalised with Photoresponsive Chromophoric System 2-[(E)-(3-Hydroxynaphthalen-2-yl) diazenyl] Benzoic Acid

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This study establishes the synthesis of silver nanoparticles (AgNPs), synthesis of a photoresponsive system 2-[(E)-(3-hydroxynaphthalen-2-yl) diazenyl] benzoic acid, and encapsulation of AgNPs into the biomacromolecular system, bovine serum albumin (BSA) functionally modified with the photoactive system by means of DCC coupling. The optical properties, structural properties, morphology, and size distribution were confirmed by various characterisation techniques such as ultraviolet (UV)/visible, Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR), photoluminescence (PL) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). The photo responsive behaviour of the functionally modified BSA and nanoparticle dispersed system were investigated. The antibacterial effects of AgNPs and photo induced antimicrobial properties of the functionally modified BSA-AgNP conjugates were evaluated against some selected bacterial strains such as Corynebacterium diphtheriae (gram +ve), Bacillus cereus (gram +ve), Raoultella ornithinolytica (gram -ve), and Salmonella typhimurium (gram -ve) using disc diffusion. We found that silver nanoparticles encapsulating functionally modified BSA seem to be an effective photoactive antimicrobial agent against the multidrug resistant strains of bacteria with better photo responsive properties and with wide applications in antimicrobial photodynamic therapy (APDT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Maisch, R. Szeimies, G. Jori, and C. Abels, Photochem. Photobiol. Sci., 3, 907 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. D. K. Chatterjee, L. S. Fong, and Y. Zhang, Adv. Drug Deliv. Rev., 60, 1627 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. S. Perni, P. Prokopovich, J. Pratten, I. P. Parkin, and M. Wilson, Photochem. Photobiol. Sci., 10, 712, (2011).

    Article  CAS  PubMed  Google Scholar 

  4. M. Schafer, C. Schmitzand, and G. Horneck, Int. J. Radiat. Biol., 74, 249 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. D. C. Ferreira, C. S. Monteiro, C. R. Chaves, G. A. M. Sáfar, R. L. Moreira, M. V. B. Pinheiro, D. C. S. Martins, L. O. Ladeira, and K. Krambrock, Colloids Surf. B: Biointerfaces, 150, 297 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, J. Fluoresc., 17, 345 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. S. M. Mooi and B. Heyne, Photochem. Photobiol., 90, 85 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. O. Planas, N. Macia, M. Agut, S. Nonell, and B. Heyne, J. Am. Chem. Soc., 138, 2762 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. K. Alaqad and T. A. Saleh, J. Environ. Anal. Toxicol., 6, 384 (2016).

    Article  Google Scholar 

  10. Y. A. Krutyakov, A. A. Kudrinskiy, A. Y. Olenin, and G. V. Lisichkin, Russian Chem. Rev., 77, 33 (2008).

    Article  CAS  Google Scholar 

  11. S. Srinivasan, V. Bhardwaj, A. Nagasetti, A. Fernandez, and A. J. McGoron, J. Biomed. Nanotechnol., 12, 2202 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. I. M. Tynga, A. Hussein, M. A. Harith, and H. Abrahamse, Int. J. Nanomedicine, 9, 3771 (2014).

    Google Scholar 

  13. R. Corato, D. Palumberi, R. Marotta, M. Scotto, S. Carregal-Romero, P. Rivera-Gil, W. J. Parak, and T. Pellegrino, Small, 8, 2731 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. C. George, S. Kuriakose, S. George, and T. Mathew, Supramol. Chem., 23, 593 (2011).

    Article  CAS  Google Scholar 

  15. T. V. Mathew and S. Kuriakose, Colloids Surf. B: Biointerfaces, 101, 14 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Y. E. L. Koo, W. Fan, H. Hah, H. Xu, D. Orringer, B. Ross, A. Rehemtulla, M. A. Philbert, and R. Kopelman, Appl. Opt., 46, 1924 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. H. Hiroki and F. E. Osterloh, Chem. Mater., 16, 2509 (2004).

    Article  CAS  Google Scholar 

  18. A. Chandran, S. Kuriakose, and T. Mathew, Polym. Adv. Technol., 24, 525 (2013).

    Article  CAS  Google Scholar 

  19. D. J. Alderman and P. Smith, Aquaculture, 196, 211 (2001).

    Article  CAS  Google Scholar 

  20. Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals; Approved Standard, 3rd ed., M31-A3, Vol. 28:8 (2008).

  21. T. Pradeep, NANO the Essentials, Tata McGraw-Hill Education, New Delhi, 2007.

    Google Scholar 

  22. B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Edison-Wesley Publishing Company Inc, USA, 1978.

    Google Scholar 

  23. I. Capek, Noble metal nanoparticles, Nanostructure science and technology, Springer Japan K K, 2017.

    Book  Google Scholar 

  24. C. L. Friedrich, D. Moyles, T. J. Beveridge, and R. E. Hancock, Antimicrob. Agents Chemother., 44, 2086 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny Kuriakose.

Additional information

Acknowledgments: This work was supported financially by the University Grants Commission, New Delhi, India (Grant No.MRP(S)/13-14/KLMG 027/UGC-SWRO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, L.M., Kuriakose, S. Photochemical Studies and Photoinduced Antibacterial Properties of Silver Nanoparticle-Encapsulated Biomacromolecule Bovine Serum Albumin Functionalised with Photoresponsive Chromophoric System 2-[(E)-(3-Hydroxynaphthalen-2-yl) diazenyl] Benzoic Acid. Macromol. Res. 27, 73–82 (2019). https://doi.org/10.1007/s13233-019-7004-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7004-9

Keywords

Navigation