Skip to main content
Log in

In vivo bone regeneration ability of different layers of natural silk cocoon processed using an eco-friendly method

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Silk cocoons are primarily composed of the proteins fibroin and sericin. To achieve guided bone regeneration (GBR), we have developed a simple and ecofriendly processing technique to obtain microperforated thin membranes from cocoons. The separated silk membranes composed of both fibroin and sericin were classified by the cocoon layers (i.e., inner, middle, or outer) from which they originated. This report details the biological properties and the cellular responses of the three silk layers. The different cocoon layers were compared for their bone regeneration capabilities in vivo. The porosity of the silk nets increased from the inner layer to the outer layer when all of the membranes were compared using scanning electron microscopy (SEM). A difference in spectral intensity was observed in the Fourier transform infrared (FT-IR) spectra, indicating different amino acid compositions in these layers. An amino acid composition test demonstrated that the serine content decreased from the outer layer to the inner layer. Characterization of the protein release from each net demonstrated that the highest amount of protein release was observed in the inner layer group. The middle layer showed higher alkaline phosphatase (ALP) activity than the other layers in cellular experiments. Animal experiments indicated that the middle layers exhibit the highest bone volume 8 weeks post-operation (p<0.05). The membranes obtained directly from the thin middle layer of silk cocoons without any regeneration protocol have the potential to be used as an eco-friendly bone regeneration material for in vivo applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Baek, J.-H. Kim, J.-M. Song, S.-Y. Yoon, H.-S. Kim, and S.-H. Shin, Maxillofac. Plast. Reconstr. Surg., 38, 14 (2016).

    Article  Google Scholar 

  2. A. Khojasteh, G. Morad, and H. Behnia, J. Oral Implantol., 39, 386 (2013).

    Article  Google Scholar 

  3. S.-W. Lee, I.-C. Um, S.-G. Kim, and M.-S. Cha, Maxillofac. Plast. Reconstr. Surg., 37, 32 (2015).

    Article  Google Scholar 

  4. L. T. Lindfors, E. A. Tervonen, G. K. Sándor, and L. P. Ylikontiola, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 109, 825 (2010).

    Article  Google Scholar 

  5. M. Chiapasco and M. Zaniboni, Clin. Oral Implants Res., 20, 113 (2009).

    Article  Google Scholar 

  6. F. G. Omenetto and D. L. Kaplan, Science, 329, 528 (2010).

    Article  CAS  Google Scholar 

  7. C.-K. Yoo, J.-Y. Jeon, Y.-J. Kim, S.-G. Kim, and K.-G. Hwang, Maxillofac. Plast. Reconstr. Surg., 38, 17 (2016).

    Article  Google Scholar 

  8. S. Inoue, K. Tanaka, F. Arisaka, S. Kimura, K. Ohtomo, and S. Mizuno, J. Biol. Chem., 275, 40517 (2000).

    Article  CAS  Google Scholar 

  9. B. Kundu, N. E. Kurland, B. Subia, C. Patra, F. B. Engel, V. K. Yadavalli, and S. C. Kundu, Prog. Polym. Sci., 39, 251 (2014).

    Article  CAS  Google Scholar 

  10. D.-D. Fei, F.-J. Liu, Q.-N. Cui, and J.-H. He, Thermal Sci., 17, 1546 (2013).

    Article  Google Scholar 

  11. C. P. Singh, R. L. Vaishna, A. Kakkar, K. P. Arunkumar, and J. Nagaraju, Cell Microbiol., 16, 1354 (2014).

    Article  CAS  Google Scholar 

  12. P. Aramwit, T. Siritientong, and T. Srichana, Waste Manag. Res., 30, 217 (2012).

    Article  CAS  Google Scholar 

  13. J. Kaur, R. Rajkhowa, T. Tsuzuki, K. Millington, J. Zhang, and X. Wang, Biomacromlecules, 14, 3660 (2013).

    Article  CAS  Google Scholar 

  14. R. Dash, C. Acharya, P. C. Bindu, and S. C. Kundu, BMB Rep., 41, 236 (2008).

  15. Y. Takasu, H. Yamada, T. Tamura, H. Sezutsu, K. Mita, and K. Tsubouchi, Insect Biochem. Mol. Biol., 37, 1234 (2007).

    Article  CAS  Google Scholar 

  16. M. N. Padamwar, and A. P. Pawar, J. Sci. Ind. Res., 63, 323 (2004).

    CAS  Google Scholar 

  17. Z. Dong, P. Zhao, Y. Zhang, Q. Song, X. Zhang, P. Guo, D. Wang, and Q. Xia, Sci. Rep., 6, 21158 (2016).

    Article  CAS  Google Scholar 

  18. B. Panilaitis, G. H. Altman, J. Chen, H. J. Jin, V. Karageorgiou, and D. L. Kaplan, Biomaterials, 24, 3079 (2003).

    Article  CAS  Google Scholar 

  19. P. Aramwit, S. Kanokpanont, W. D. Eknamkul, and T. Srichana, J. Biosci. Bioeng., 107, 556 (2009).

    Article  CAS  Google Scholar 

  20. C. R. Uff, A. D. Scott, A. G. Pockley, and R. K. Phillips, Biomaterials, 16, 355 (1995).

    Article  CAS  Google Scholar 

  21. S.-W. Lee, Y.-T. Park, S.-G. Kim, H. Kweon, Y.-Y. Jo, and H.-S. Lee, J. Korean Assoc. Maxillofac. Plast. Reconstr. Surg., 34, 293 (2012).

  22. K.-H. Kim, L. Jeong, H.-N. Park, S.-Y. Shin, W.-H. Park, S.-C. Lee, T.-I. Kim, Y.-J. Park, Y.-J. Seol, Y.-M. Lee, Y. Ku, I.-C. Rhyu, S.-B. Han, and C.-P. Chung, J. Biotechnol., 120, 327 (2005).

    Article  CAS  Google Scholar 

  23. J.-H. He, H.-Y. Kong, R.-R.Yang, H. Dou, N. Faraz, L. Wang, and C. Feng, Thermal Sci., 16, 1263 (2012).

    Article  Google Scholar 

  24. F. Chen, D. Porter, and F. Vollrath, Mater. Sci. Eng. C, 32, 772 (2012).

    Article  CAS  Google Scholar 

  25. H. Maekawa, and Y. Suzuki, Dev. Biol., 78, 394 (1980).

    Article  CAS  Google Scholar 

  26. Y.-Y. Ha, Y.-W. Park, H. Kweon, Y.-Y. Jo, and S.-G. Kim, Macromol. Res., 22, 1018 (2014).

    Article  CAS  Google Scholar 

  27. H. Seok, M.-K. Kim, S.-G. Kim, and H. Kweon, J. Craniofac. Surg., 25, 2066 (2014).

    Article  Google Scholar 

  28. S.-G. Kim, M.-K. Kim, H. Kweon, Y.-Y. Jo, K.-G. Lee, and J.-K. Lee, Maxillofac. Plast. Reconstr. Surg., 38, 11 (2016).

    Article  Google Scholar 

  29. H. Seok, S.-G. Kim, H. Kweon, Y.-Y. Jo, K.-G. Lee, T.-Y. Kang, W.-S. Chae, S.-K. Min, J.-H. Ahn, J.-W. Park, and D.-J. Choi, Tissue Eng. Regen. Med., 11, 476 (2014).

    Article  CAS  Google Scholar 

  30. H. Teramoto, T. Kameda, and Y. Tamada, Biosci. Biotechnol. Biochem., 72, 3189 (2008).

    Article  CAS  Google Scholar 

  31. H. Teramoto and M. Miyazawa, Biomacromolecules, 6, 2049 (2005).

    Article  CAS  Google Scholar 

  32. K. Zheng, Y. Chen, W. Huang, Y. Lin, D. L. Kaplan, and Y. Fan, ACS Appl. Mater. Interfaces, 8, 14406 (2016).

    Article  Google Scholar 

  33. S. Prasong, S. Yaowalak, and S. Wilaiwan, Pak. J. Biol. Sci., 12, 872 (2009).

    Article  CAS  Google Scholar 

  34. A. Datta, A. K. Ghosh, and S. C. Kundu, Comp. Biochem. Physiol. B: Biochem. Mol. Biol., 129, 197 (2001).

    Article  CAS  Google Scholar 

  35. Y. Takasu, H. Yamada, T. Tamura, H. Sezutsu, K. Mita, and K. Tsubouchi, Insect Biochem. Mol. Biol., 37, 1234 (2007).

    Article  CAS  Google Scholar 

  36. Y. Takasu, T. Hata, K. Uchino, and Q. Zhang, Insect Biochem. Mol. Biol., 40, 339 (2010).

    Article  CAS  Google Scholar 

  37. Y. Takasu, H. Yamada, and K. Tsubouchi, Biosci. Biotechnol. Biochem., 66, 2715 (2002).

    Article  CAS  Google Scholar 

  38. Y. Takasu, T. Hata, K. Uchino, and Q. Zhang, Insect Biochem. Mol. Biol., 40, 339 (2010).

    Article  CAS  Google Scholar 

  39. J. Kaur, R. Rajkhowa, T. Tsuzuki, K. Millington, J. Zhang, and X. Wang, Biomacromolecules, 14, 3660 (2013).

    Article  CAS  Google Scholar 

  40. H. K. Soong and K. R. Kenyon, Opthalmology, 91, 479 (1984).

    Article  CAS  Google Scholar 

  41. K. D. Merkel, J. M. Erdmann, K. P. McHugh, Y. Abu-Amer, F. P. Ross, and S. L. Teitelbaum, Am. J. Pathol., 154, 203 (1999).

    Article  CAS  Google Scholar 

  42. D. Jao, X. Mou, and X. Hu, J. Funct. Biomater., 7, 22 (2016).

    Article  Google Scholar 

  43. M. Yang, Y. Shuai, C. Zhang, Y. Chen, L. Zhu, C. Mao, and H. OuYang, Biomacromolecules, 15, 1185 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Gon Kim.

Additional information

Acknowledgments: This work was carried out with the support of the “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01121404)”, Rural Development Administration, Republic of Korea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kweon, H., Jo, YY., Seok, H. et al. In vivo bone regeneration ability of different layers of natural silk cocoon processed using an eco-friendly method. Macromol. Res. 25, 806–816 (2017). https://doi.org/10.1007/s13233-017-5085-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-017-5085-x

Keywords

Navigation