Skip to main content
Log in

Biodegradability of poly(lactic acid) (PLA)/lactic acid (LA) blends using anaerobic digester sludge

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Poly(lactic acid) (PLA) has been highlighted for its excellent biodegradability and hydro-degradability. On the other hand, an estimation of the biodegradability of PLA generally requires lengthy measurements over several months because it is difficult for the terminal decomposer, a microorganism, to uptake and utilize the polymer material, making it difficult to analyze and compare the results quantitatively. In this study, it was hypothesized that the inclusion of mono lactic acid (LA) in a PLA blend improves the level of microbial attachment to the surface of the PLA blend, and increases the biodegradation rate. PLA blend films containing 1%, 2.5%, and 5% of LA were prepared, and their morphological changes to the surface and cross section of films were investigated. The biodegradation of a PLA/LA blend using digester sludge was estimated quantitatively from the specific gas production rate (SGPR) based on the surface area of the blend film. The physical and chemical properties before and after biodegradation were also compared. These results show that PLA/LA blends with a controlled degradation rate can be developed by incorporating readily degradable chemicals, and implemented as environmentally friendly plastics and polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-X. Weng, Y.-J. Jin, Q.-Y. Meng, L. Wang, M. Zhang, and Y.-Z. Wang, Polym. Test., 32, 918 (2013).

    Article  CAS  Google Scholar 

  2. Y.-X. Weng, L. Wang, M. Zhang, X.-L. Wang, and Y.-Z. Wang, Polym. Test., 32, 60 (2013).

    Article  CAS  Google Scholar 

  3. Y. Phua, N. Lau, K. Sudesh, W. Chow, and Z. M. Ishak, Polym. Degrad. Stab., 97, 1345 (2012).

    Article  CAS  Google Scholar 

  4. J. K. Pandey, K. R. Reddy, A. P. Kumar, and R. Singh, Polym. Degrad. Stab., 88, 234 (2005).

    Article  CAS  Google Scholar 

  5. X. Hu, U. Thumarat, X. Zhang, M. Tang, and F. Kawai, Appl. Microbiol. Biotechnol., 87, 771 (2010).

    Article  CAS  Google Scholar 

  6. J. R. Russell, J. Huang, P. Anand, K. Kucera, A. G. Sandoval, K. W. Dantzler, D. Hickman, J. Jee, F. M. Kimovec, D. Koppstein, D. H. Marks, P. A. Mittermiller, S. J. Nunez, M. Santiago, M. A. Townes, M. Vishnevetsky, N. E. Williams, M. P. Vargas, L. A. Boulanger, C. Bascom-Slack, and S. A. Strobel, Appl. Environ. Microbiol., 77, 6076 (2011).

    Article  CAS  Google Scholar 

  7. D. Van Cong, T. Hoang, N. V. Giang, N. T. Ha, T. D. Lam, and M. Sumita, Mater. Sci. Eng. C, 32, 558 (2012).

    Article  Google Scholar 

  8. P. K. Roy, M. Hakkarainen, and A.-C. Albertsson, Polym. Degrad. Stab., 97, 1254 (2012).

    Article  CAS  Google Scholar 

  9. M.-A. Paul, C. Delcourt, M. Alexandre, P. Degée, F. Monteverde, and P. Dubois, Polym. Degrad. Stab., 87, 535 (2005).

    Article  CAS  Google Scholar 

  10. Q. Zhou and M. Xamthos, Polym. Degrad. Stab., 93, 1450 (2008).

    Article  CAS  Google Scholar 

  11. K. Fukushima, C. Abbate, D. Tabuani, M. Gennari, and G. Camino, Polym. Degrad. Stab., 94, 1646 (2009).

    Article  CAS  Google Scholar 

  12. C. Way, K. Dean, D.Y. Wu, and E. Palombo, Polym. Degrad. Stab., 97, 430 (2012).

    Article  CAS  Google Scholar 

  13. C. Way, D. Wu, D. Cram, K. Dean, and E. Palombo, J. Polym. Environ., 21, 54 (2013).

    Article  CAS  Google Scholar 

  14. W. Chávez-Montes, G. González-Sánchez, E. López-Martínez, P. de Lira-Gómez, L. Ballinas-Casarrubias, and S. Flores-Gallardo, Polymers, 7, 760 (2015).

    Article  Google Scholar 

  15. C. Liu, Y. Jia, and A. He, Int'l. J. Polym. Sci., 2013, 6 (2013).

    Google Scholar 

  16. M. V. G. Zimmermann, V. C. Brambilla, R. N. Brandalise, and A. J. Zattera, Mater. Res., 16, 1266 (2013).

    Article  CAS  Google Scholar 

  17. M. P. Arrieta, J. López, E. Rayón, and A. Jiménez, Polym. Degrad. Stab., 108, 307 (2014).

    Article  CAS  Google Scholar 

  18. H. Yagi, F. Ninomiya, M. Funabashi, and M. Kunioka, Int. J. Mol. Sci., 10, 3824 (2009).

    Article  CAS  Google Scholar 

  19. S.-L. Yang, Z.-H. Wu, W. Yang, and M.-B. Yang, Polym. Test., 27, 957 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Rae Kim or Chang-Sik Ha.

Additional information

The first two authors are equally contributed to the manuscript.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.C., Moon, J.H., Jeong, JH. et al. Biodegradability of poly(lactic acid) (PLA)/lactic acid (LA) blends using anaerobic digester sludge. Macromol. Res. 24, 741–747 (2016). https://doi.org/10.1007/s13233-016-4100-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-016-4100-y

Keywords

Navigation