Skip to main content
Log in

Microwave absorption properties of polyaniline/poly(vinyl alcohol)/multi-walled carbon nanotube composites in thin film and nanofiber layer structures

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Electrospinning of conductive polymer blends offers high potential to prepare novel materials for electronical applications. The main aim of this work is to fabricate poly(vinyl alcohol) (PVA), polyaniline (PANI), and multi walled carbon nanotubes (MWNT) composites in thin film and nanofiber layer structures and then compare their microwave absorption behavior. First, optimum ratios for blending PVA, PANI, Camphorsulfonic acid (CSA) and MWNT were obtained. Then under optimized ratios, composite solutions of PVA: PANI-CSA, and PVA/PANI-CSA/MWNT were fabricated to nanofiber layer and thin film structures. Based on scanning electron microscope (SEM) micrographs, the PVA/PANI-CSA nanofiber samples at low content of PANI-CSA presented a very uniform surface and without any beads but some beads started to develop at higher PANI-CSA content. However, the SEM analysis of the PVA/PANI-CSA/MWNT films revealed the uniform appearance for all composites. But, some aggregation and local irregularities on the surface were observed due to the presence of MWNT in the composite structure. Microwave absorption behavior was evaluated using vector network analyzers in the frequency range of 8-12 GHz (X-band) for all samples. It was observed that absorption microwave properties of PVA/PANI-CSA nanofibers improved with increasing in the loading levels of PANI-CSA in the mixture. Microwave absorption properties of the PVA/PANI-CSA/MWNT composite nanofiber absorbers have been compared with thin films at various thicknesses by measuring the relative maximum reflection loss (dB/mm) of samples. The PVA/PANI-CSA/MWNT composite nanofibers with the layer thickness of 0.1 mm presented two remarkable absorbing peaks versus one absorbing peak in nanocomposite films with similar thickness. The relative maximum reflection loss in PVA/PANI-CSA/MWNT composite nanofiber has reached -230 dB/mm at frequency of 8.6 GHz which is nearly 8 times higher than -28 dB/mm at frequency of 8.4 GHz for PVA/PANI-CSA/MWNT film samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, Mater. Chem. Phys., 113, 919 (2009).

    Article  CAS  Google Scholar 

  2. M. S. Han, Y. K. Lee, W. N. Ki, H. S. Lee, J. S. Joo, M. Park, H. J. Lee, and C. R. Park, Macromol. Res., 17, 863 (2009).

    Article  CAS  Google Scholar 

  3. C. J. Li, B. Wang, and J. N. Wang, J. Magn. Magn. Mater., 324, 1305 (2012).

    Article  CAS  Google Scholar 

  4. A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, J. Magnetism. Magnetic. Mater., 302, 429 (2006).

    Article  CAS  Google Scholar 

  5. Y. K. Sung and F. Tantawy, Macromol. Res., 10, 345 (2002).

    Article  CAS  Google Scholar 

  6. D. R. J. White, A Handbook on Shielding Design Methodology and Procedures Gainesville, VA: Interference Control Technologies, New York, 1986.

    Google Scholar 

  7. B. D. Che, L. T. Nguyen, B. Q. Nguyen, H. T. Nguyen, T. V. Le, and N. H. Nguyen, Macromol. Res., 22, 1221 (2014).

    Article  CAS  Google Scholar 

  8. Z. Wang, H. Bi, J. Liu, T. Sun, and X. Wu, J. Magnetism. Magnetic. Mater., 320, 2139 (2008).

    Google Scholar 

  9. P. S. Neelakanta, Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications, CRC Press, New York, 1995.

    Google Scholar 

  10. A. G. MacDiarmid, Synth. Met., 125, 11 (2001).

    Article  Google Scholar 

  11. J. D. Sudha, S. Sivakala, R. Prasanth, V. L. Reena, and P. R. Nair, Compos. Sci. Technol., 69, 358 (2009).

    Article  CAS  Google Scholar 

  12. R. K. Paul and C. K. S. Pillai, Synth. Met., 27, 114 (2000).

    Google Scholar 

  13. M. A. Abshinova, N. E. Kazantseva, P. Saha, I. Sapurina, J. Kovarova, and J. Stejskal, Polym. Degrad. Stab., 93, 1826 (2008).

    Article  CAS  Google Scholar 

  14. S. Bhadra, D. Khastgir, N. K. Singha, and J. H. Lee, Prog. Polym. Sci., 34, 783 (2009).

    Article  CAS  Google Scholar 

  15. T. H. Hsieh, K. S. Ho, C. H. Huang, Y. Z. Wang, and Z. L. Chen, Synth. Met., 156, 1355 (2006).

    Article  CAS  Google Scholar 

  16. X. Jing, Y. Wang, and B. Zhang, Appl. Polym. Sci., 98, 2149 (2005).

    Article  CAS  Google Scholar 

  17. N. H. Hoang, J. L. Wojkiewicz, J. L. Miane, and R. S. Biscarro, Polym. Adv. Technol., 18, 257 (2007).

    Article  CAS  Google Scholar 

  18. P. Saini, V. Choudhary, B. P. Singh, R. B. Mathur, and S. K. Dhawan, Synth. Met., 161, 1522 (2011).

    Article  CAS  Google Scholar 

  19. S. W. Phang, M. Tadokoro, J. Watanab, and N. Kuramoto, Synth. Met., 158, 251 (2008).

    Article  CAS  Google Scholar 

  20. J. M. Thomassin, I. Huynen, R. Jerome, and C. Detrembleur, Polymer, 51, 115 (2010).

    Article  CAS  Google Scholar 

  21. J. E. Fischer, H. Dai, A. Thess, R. Lee, N. M. Hanjani, D. L. Dehaas, and R. E. Smalley, Phys. Rev. B, 55, 921 (1997).

    Article  Google Scholar 

  22. K. Saeed, S. Y. Park, S. Haider, and J. B. Baek, Nanoscale Res. Lett., 4, 39 (2009).

    Article  CAS  Google Scholar 

  23. D. H. Park, Y. K. Lee, S. S. Park, C. S. Lee, S. H. Kim, and W. N. Kim, Macromol. Res., 21, 905 (2013).

    Article  CAS  Google Scholar 

  24. S. Fan, M. G. Chapline, N. R. Franklin, and T. W. Tombler, Science, 283, 512 (1999).

    Article  CAS  Google Scholar 

  25. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nature, 384, 147 (1996).

    Article  CAS  Google Scholar 

  26. G. Salimbeygi, K. Nasouri, A. M. Shoushtari, R. Malek, and F. Mazaheri, Micro Nano Lett., 8, 455 (2013).

    Article  CAS  Google Scholar 

  27. F. Raeesi, M. Nouri, and A. K. Haghi, ePolymer, 114, 1 (2009).

    Google Scholar 

  28. P. Heikkila and A. Harlin, Eur. Polym. J., 44, 3067 (2008).

    Article  CAS  Google Scholar 

  29. K. Desai and C. Sung, NSTI-Nanotech, 3, 429 (2004).

    CAS  Google Scholar 

  30. P. Supaphol and S. Chuangchote, Appl. Polym. Sci., 108, 969 (2008).

    Article  CAS  Google Scholar 

  31. E. J. Ra, K. H. An, K. K. Kim, S. Y. Jeong, and Y. H. Lee, Chem. Phys. Lett., 413, 188 (2005).

    Article  CAS  Google Scholar 

  32. S. B. Ni, X. H. Wang, G. Zhou, F. Yang, J. M. Wang, and D. Y. He, J. Alloys Compd., 489, 252 (2010).

    Article  CAS  Google Scholar 

  33. Y. Wang, Y. Huang, Q. Wang, Q. He, and L. Chen, Appl. Surf. Sci., 259, 486 (2012).

    Article  CAS  Google Scholar 

  34. H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, John Wiley and Sons Ltd., Chichester, 1997.

    Google Scholar 

  35. C. Y. Lee, H. G. Song, K. S. Jang, E. J. Oh, A. J. Epstein, nad J. Joo, Synth. Met., 102, 1346 (1999).

    Article  CAS  Google Scholar 

  36. A. Kaynak, A. Polat, and U. Yilmazar, Mater. Res. Bull., 31, 845 (1996).

    Article  CAS  Google Scholar 

  37. Y. Feng and T. Qiu, J. Magn. Magn. Mater., 324, 2528 (2012).

    Article  CAS  Google Scholar 

  38. K. J. Sun, R. A. Wincheski, and C. Park, J. Appl. Phys. 103, 023908 (2008).

  39. A. Drmota, J. Koselj, M. Drofenik, and A. Znidarsic, J. Magn. Magn. Mater., 324, 1225 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Mousavi Shoushtari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimbeygi, G., Nasouri, K., Shoushtari, A.M. et al. Microwave absorption properties of polyaniline/poly(vinyl alcohol)/multi-walled carbon nanotube composites in thin film and nanofiber layer structures. Macromol. Res. 23, 741–748 (2015). https://doi.org/10.1007/s13233-015-3102-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3102-5

Keywords

Navigation