Skip to main content
Log in

Effects of carbon nanotube dispersion methods on the radar absorbing properties of MWCNT/epoxy nanocomposites

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Radar absorbing materials (RAMs) for practical applications are expected not only to have strong microwave absorption and a wide absorption bandwidth, but also to be lightweight, to have a fine thickness and acceptable structural performance, as well as being cost-effective. Although the dispersion of carbon-nanofillers in polymer matrices is a key factor determining the microwave absorbing properties of the composites, there have few studies on these effects. To our knowledge, to date, the realization of pristine multi-walled carbon nanotube (MWCNT)/polymer composites as RAMs in industrial production has been restricted, due to high CNT contents or large composite thicknesses. Thus, in this work, two MWCNT dispersion processing methods, a solution process with surfactant-aid and a ball-milling dispersion, were investigated to fabricate pristine MWCNT/epoxy nanocomposites. The effects of the different dispersion processes, CNT loading, and composite thickness on CNT dispersion in the matrix, were observed by TEM, and the electrical conductivity and X-band absorbing performance of the composites were assessed. The use of an ionic surfactant to aid the dispersion of CNTs in solution resulted in the best RAMs, with a good compromise among effective X-band absorption, small composite thickness, and very low CNT content. The ball-milling method also resulted in materials with a low CNT content and microwave absorbing performance acceptable for industrial applications. Moreover, it offers a very simple and efficient route suitable for low-cost, mass production of RAMs. The results showed that by facile approaches of dispersing pristine commercial MWCNTs in an epoxy resin matrix, composites of only 2–3 mm thickness and as little as 0.25–0.5 wt% CNT loading could be obtained, with a relatively wide X-band operating bandwidth and maximum absorptions exceeding 18–25 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Qin and C. Brosseau, J. Appl. Phys., 111, 061301 (2012).

    Article  Google Scholar 

  2. D. Micheli, C. Apollo, R. Pastore, and M. Marchetti, Compos. Sci. Technol., 70, 400 (2010).

    Article  CAS  Google Scholar 

  3. J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, Polymer, 44, 5893 (2003).

    Article  CAS  Google Scholar 

  4. K. R. Paton and A. H. Windle, Carbon, 46, 1935 (2008).

    Article  CAS  Google Scholar 

  5. R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, and X. L. Liang, Adv. Mater., 16, 401 (2004).

    Article  CAS  Google Scholar 

  6. H. Lin, H. Zhu, H. Guo, and L. Yu, Mater. Lett., 61, 3547 (2007).

    Article  CAS  Google Scholar 

  7. Q. Su, G. Zhong, J. Li, G. Du, and B. Xu, Appl. Phys. A, 106, 59 (2012).

    Article  CAS  Google Scholar 

  8. H. Lin, H. Zhu, H. Guo, and L. Yu, Mater. Res. Bull., 43, 2697 (2008).

    Article  CAS  Google Scholar 

  9. L. Zhang, H. Zhu, Y. Song, Y. Zhang, and Y. Huang, Mater. Sci. Eng. B, 153, 78 (2008).

    Article  CAS  Google Scholar 

  10. L. Zhang and H. Zhu, Mater. Lett., 63, 272 (2009).

    Article  CAS  Google Scholar 

  11. L. Deng and M. Han, Appl. Phys. Lett., 91, 023119 (2007).

    Article  Google Scholar 

  12. P. Bhattacharya, S. Sahoo, and C. K. Das, Express Polym. Lett., 7, 212 (2013).

    Article  CAS  Google Scholar 

  13. X. Feng, G. Liao, J. Du, L. Dong, K. Jin, and X. Jian, Polym. Eng. Sci., 48, 1007 (2008).

    Article  CAS  Google Scholar 

  14. Z. Fan, G. Luo, Z. Zhang, L. Zhou, and F. Wei, Mater. Sci. Eng. B, 132, 85 (2006).

    Article  CAS  Google Scholar 

  15. Z. Liu, G. Bai, Y. Huang, F. Li, Y. Ma, T. Guo, X. He, X. Lin, H. Gao, and Y. Chen, J. Phys. Chem. C, 111, 13696 (2007).

    Article  CAS  Google Scholar 

  16. X. Qi, Y. Yang, W. Zhong, Y. Deng, C. Au, and Y. Du, J. Solid State Chem., 182, 2691 (2009).

    Article  CAS  Google Scholar 

  17. N. Tang, W. Zhong, C. Au, Y. Yang, M. Han, K. Lin, and Y. Du, J. Phys. Chem. C, 112, 19316 (2008).

    Article  CAS  Google Scholar 

  18. V. A. Silva, L. D. C. Folgueras, G. M. Cândido, A. L. D. Paula, M. C. Rezende, and M. L. Costa, Mater. Res., 16, 1299 (2013).

    Article  CAS  Google Scholar 

  19. P. Savi, M. Miscuglio, M. Giorcelli, and A. Tagliaferro, Prog. Electromagn. Res., 44, 63 (2014).

    Article  Google Scholar 

  20. A. Balakrishnan and M. C. Saha, Mater. Sci. Eng. A, 528, 906 (2011).

    Article  Google Scholar 

  21. M. T. Müller, B. Krause, B. Kretzschmar, and P. Pötschke, Compos. Sci. Technol., 71, 1535 (2011).

    Article  Google Scholar 

  22. J. B. Bai and A. Allaoui, Compos. Part A: Appl. Sci. Manuf., 34, 689 (2003).

    Article  Google Scholar 

  23. M. Rahmat and P. Hubert, Compos. Sci. Technol., 72, 72 (2011).

    Article  CAS  Google Scholar 

  24. O. Breuer and U. Sundararaj, Polym. Compos., 25, 630 (2004).

    Article  CAS  Google Scholar 

  25. L. Vaisman, H. D. Wagner, and G. Marom, Adv. Colloid Interface Sci., 128–130, 37 (2006).

    Article  Google Scholar 

  26. Q. Li, I. A. Kinloch, and A. H. Windle, Chem. Commun., 3283 (2005).

    Google Scholar 

  27. V. C. Moore, M. S. Strano, E. H. Haroz, R. H. Hauge, R. E. Smalley, J. Schmidt, and Y. Talmon, Nano Lett., 3, 1379 (2003).

    Article  CAS  Google Scholar 

  28. S. Bose, R. A. Khare, and P. Moldenaers, Polymer, 51, 975 (2010).

    Article  CAS  Google Scholar 

  29. H. Chen, O. Jacobs, W. Wu, G. Rüdiger, and B. Schädel, Polym. Test., 26, 351 (2007).

    Article  CAS  Google Scholar 

  30. P. Garg, B. Singh, G. Kumar, T. Gupta, I. Pandey, R. K. Seth, R. P. Tandon, and R. Mathur, J. Polym. Res., 18, 1397 (2011).

    Article  CAS  Google Scholar 

  31. Y. Geng, M. Y. Liu, J. Li, X. M. Shi, and J. K. Kim, Compos. Part A: Appl. Sci. Manuf., 39, 1876 (2008).

    Article  Google Scholar 

  32. P.-C. Ma, S.-Y. Mo, B.-Z. Tang, and J.-K. Kim, Carbon, 48, 1824 (2010).

    Article  CAS  Google Scholar 

  33. R. H. Schmidt, I. A. Kinloch, A. N. Burgess, and A. H. Windle, Langmuir, 23, 5707 (2007).

    Article  CAS  Google Scholar 

  34. Y. Zeng, P. Liu, J. Du, L. Zhao, P. M. Ajayan, and H.-M. Cheng, Carbon, 48, 3551 (2010).

    Article  CAS  Google Scholar 

  35. J. Zhong, A. I. Isayev, and K. Huang, Polymer, 55, 1745 (2014).

    Article  CAS  Google Scholar 

  36. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer, 40, 5967 (1999).

    Article  CAS  Google Scholar 

  37. Y. S. Song and J. R. Youn, Carbon, 43, 1378 (2005).

    Article  CAS  Google Scholar 

  38. F. Nanni, P. Travaglia, and M. Valentini, Compos. Sci. Technol., 69, 485 (2009).

    Article  CAS  Google Scholar 

  39. E. Michielssen, J. M. Sajer, S. Ranjithan, and R. Mittra, IEEE Trans. Microw. Theory Tech., 41, 1024 (1993).

    Article  CAS  Google Scholar 

  40. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, I. A. Kinloch, W. Bauhofer, A. H. Windle, and K. Schulte, Polymer, 47, 2036 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Le-Thu T. Nguyen or Nieu Huu Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, B.D., Nguyen, LT.T., Nguyen, B.Q. et al. Effects of carbon nanotube dispersion methods on the radar absorbing properties of MWCNT/epoxy nanocomposites. Macromol. Res. 22, 1221–1228 (2014). https://doi.org/10.1007/s13233-014-2169-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-014-2169-8

Keywords

Navigation