Skip to main content
Log in

Effect of carbon nanotube on the mechanical, plasticizing behavior and thermal stability of PVC/poly(acrylonitrile–styrene–acrylate) nanocomposites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyvinylchloride (PVC)/poly(acrylonitrile–styrene–acrylate) (ASA)/multi-walled carbon nanotubes (MWCNTs) nanocomposites were prepared. The plasticizing behavior, dynamic mechanical properties, mechanical properties and thermal stability of the nanocomposites were studied. The results demonstrate that the plasticizing time shortens as the MWCNTs content increases. The nanocomposites show the best impact strength, which is 83.7 % higher than pure PVC/ASA blend and is 2.1 times higher than pure PVC, when the MWCNTs content is 0.054 wt%. MWCNTs can enhance the thermal stability of PVC/ASA blends; the initial decomposition temperature (T id) and thermal degradation activation energy (E a) increase by 13.1 °C and 5.7 kJ mol−1, respectively, when the MWCNTs content is 0.066 wt%. The storage modulus (E ) and glass transition temperature (T g) also increase when MWCNTs are added. MWCNTs can be used as an efficient toughening modifier and processing aid for PVC/ASA blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Song L, Ren L, Zhang MY, Sun SL, Gao GH, Gui Y, Zhang LX, Zhang HX (2013) Effect of entanglement density on mechanical properties and deformation behavior of rubber-modified PVC/α-MSAN blends. Ind Eng Chem Res 52(35):12567–12573

    Article  CAS  Google Scholar 

  2. Flores R, Perez J, Cassacnau P, Miche A, Cavaille JY (1996) Dynamic mechanical behavior of poly(viny1 chloride)/poly(methyl methacrylate) polymer blend. J Appl Polym Sci 60(11):1439–1453

    Article  CAS  Google Scholar 

  3. Zhou C, Chen M, Tan ZY (2006) The influence of arrangement of St in MBS on the properties of PVC/MBS blends. Eur Polym J 42(8):1811–1818

    Article  CAS  Google Scholar 

  4. Radhakrishnan MN, Gopinathan MR (2012) Studies on impact modification and fractography of solution cast blends of PVC and NR/PU block copolymers. Polym Bull 68(3):859–877

    Article  Google Scholar 

  5. Gheno SM, Passador FR, Pessan LA (2009) Effect of NBR partitioning agent on the mechanical properties of PVC/NBR blends and investigation of phase morphology by atomic force microscopy. Polym Bull 63(6):865–881

    Article  CAS  Google Scholar 

  6. Ratnam CT, Kamaruddin S, Abdullah Z (2011) Irradiation modification of PVC/NBR blend. Polym Plast Technol Eng 50(8):833–838

    Article  CAS  Google Scholar 

  7. Xu X, Meng XD, Chen KQ (1987) A study on poly(vinyl chloride) blends with chlorinated polyethylene and polyethylene. Polym Eng Sci 27(2):391–397

    CAS  Google Scholar 

  8. Du YG, Gao JG, Yang JB, Liu XQ (2012) Dynamic rheological behavior and mechanical properties and of PVC/ASA blends. J Polym Res 19(11):1–7

    Article  CAS  Google Scholar 

  9. Zhang YX, Xu YJ, Song YH, Zheng Q (2013) Study of poly (vinyl chloride)/acrylonitrile–styrene–acrylate blends for compatibility, toughness, thermal stability and UV irradiation resistance. J Appl Polym Sci 130(3):2143–2151

    Article  CAS  Google Scholar 

  10. Moghbeli MR, Tolue S (2011) Acrylonitrile/styrene/acrylate structural rubber latex particles as impact modifier for SAN copolymer. Iran Polym J 20(1):137–146

    CAS  Google Scholar 

  11. Coleman JN, Khan U, Blau WJ, Gunko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44(9):1624–1652

    Article  CAS  Google Scholar 

  12. Qju JJ, Wang SR (2010) Reaction kinetics of functionalized carbon nanotubes reinforced polymer composites. Mater Chem Phys 121(2):295–301

    Google Scholar 

  13. Shanmugharaj AM, Choi WS, Sung Hun Ryu SH (2011) Physical properties of phenol-anchored multiwall carbon nanotube/epoxy nanocomposite. Polym Bull 67(8):1721–1730

    Article  CAS  Google Scholar 

  14. Song BJ, Ahn JW, Cho KK, Roh JS, Seung J, Lee DY, Yang YS, Lee JB, Hwang DY, Kim HS (2013) Electrical and mechanical properties as a processing condition in polyvinylchloride multi walled carbon nanotube composites. J Nanosci Nanotechnol 13(11):7723–7727

    Article  CAS  Google Scholar 

  15. Yoon JT, Jeong YG, Lee SC, Min BG (2009) Influences of poly(lactic acid)-grafted carbon nanotube on thermal, mechanical, and electrical properties of poly(lactic acid). Polym Adv Technol 20(7):631–638

    Article  CAS  Google Scholar 

  16. Shojaei A, Nourbakhsh P, Faghihi M (2014) An investigation on the structural characteristics and reinforcement of melt processed polyamide 66/multiwalled carbon nanotube composites. Polym Adv Technol. 25(11):406–417

    Article  CAS  Google Scholar 

  17. Kang SM, Kwon SH, Park JH, Kim BK (2013) Carbon nanotube reinforced shape memory polyurethane foam. Polym Bull 70(3):885–893

    Article  CAS  Google Scholar 

  18. Mechrez G, Suckeveriene RY, Segal E, Narkis M (2014) Polymer/carbon nanofillers films fabricated by latex technology. Polym Adv Technol 25(11):1301–1306

    Article  CAS  Google Scholar 

  19. Sombatsompop N, Phromchirasuk C (2004) Effects of acrylic-based processing aids on processibility, rheology, thermal and structural stability, and mechanical properties of PVC/wood–sawdust composites. J Appl Polym Sci 92(2):782–790

    Article  CAS  Google Scholar 

  20. Lin DH, Xing BS (2008) Tannic acid adsorption and its role for stabilizing carbon nanotube suspensions. Environ Sci Technol 42(16):5917–5923

    Article  CAS  Google Scholar 

  21. Zammarano M, Krämer RH, Jr RH, Ohlemiller TJ, Shields JR, Rahatekar SS, Lacerda S, Gilman JW (2008) Flammability reduction of flexible polyurethane foams via carbon nanofiber network formation. Polym Adv Technol 19(6):588–595

    Article  CAS  Google Scholar 

  22. Brandalise RN, Zeni M, Martins JDN, Forte MMC (2009) Morphology, mechanical and dynamic mechanical properties of recycled high density polyethylene and poly (vinyl alcohol) blends. Polym Bull 62(1):33–43

    Article  CAS  Google Scholar 

  23. Basuli U, Chaki TK, Chattopadhyay S (2012) Rheological signatures of ethylene methyl acrylate-multiwalled carbon nanotube nanocomposites. Polym Adv Technol 23(1):65–76

    Article  CAS  Google Scholar 

  24. Sterzyński T, Tomaszewska J, Piszczek K, Skórczewskab K (2010) The influence of carbon nanotubes on the PVC glass transition temperature. Compos Sci Technol 70(6):966–969

    Article  Google Scholar 

  25. Ogata M, Kinjo N, Kawata T (1993) Effects of crosslinking on physical properties of phenol–formaldehyde novolac cured epoxy resins. J Appl Polym Sci 48(4):583–601

    Article  CAS  Google Scholar 

  26. Friedman HL (1964) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C 6(1):183–195

    Article  Google Scholar 

  27. Yao L, Ding J, Qu BJ, Shi WF (2005) Kinetics study of thermal degradation of UV-cured acrylated cyclophosphazene/epoxy acrylate blends. Acta Chim Sinica 63(19):1834–1840

    CAS  Google Scholar 

  28. Wang WY, Luo GH, Wei F (2010) Microstructure and characterization of MWNTs/polyvinyl chloride composites. Polym Mater Sci Eng 26(8):35–38

    Google Scholar 

  29. Guo GQ, Wu LM, Wang CC, Fang JF (2009) Functionalization of carbon nanotubes through free radical reaction. Prog Chem 21(10):2084–2092

    CAS  Google Scholar 

  30. Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymers using carbon nanotubes. Adv Mater 18(6):689–706

    Article  CAS  Google Scholar 

  31. Zuiderduin WCJ, Westzaan C, Huetink J, Gaymans RJ (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44(1):261–275

    Article  CAS  Google Scholar 

  32. Liu TX, Phang IY, Shen L, Chow SY, Zhang WD (2014) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37(19):7214–7222

    Article  Google Scholar 

  33. Tang LC, Zhang H, Wu XP, Zhang Z (2011) A novel failure analysis of multi-walled carbon nanotubes in epoxy matrix. Polymer 52(9):2070–2074

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Huo or Jungang Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Li, N., Huo, L. et al. Effect of carbon nanotube on the mechanical, plasticizing behavior and thermal stability of PVC/poly(acrylonitrile–styrene–acrylate) nanocomposites. Polym. Bull. 72, 1849–1861 (2015). https://doi.org/10.1007/s00289-015-1376-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-015-1376-6

Keywords

Navigation