Skip to main content
Log in

Structure and properties of polyimide (BTDA-TDI/MDI co-polyimide) fibers obtained by wet-spinning

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

BTDA-TDI/MDI (P84, synthesized by the condensation of 2,4-diisocyanato-1-methylbenzene and 1,1′-methylenebis(4-isocyanatobenzene) with 5,5′-carbonylbis(l,3-isobenzofurandione)) co-polyimide fibers were prepared by wet-spinning. The basic spinning conditions were found from the studies of dope viscosity, ternary phase diagrams, coagulation value, and precipitation value. The effect of the coagulation bath composition on the morphology of as-spun fibers was investigated and a theoretical approach was used to understand the coagulation phenomena. Scanning electron microscopy (SEM) showed that the cross-sectional shape of the fiber deviated more from an ellipse shape with the increasement of N-methyl-2-pyrrdidinone (NMP) content. The surface and cross section morphology of the as-spun fibers was also analyzed by the rate of diffusion and phase separation. The as-spun fibers were treated in heating tubes without drawing at different temperatures. The gravimetric analysis spectra showed that the BTDA-TDI/MDI co-polyimide fibers, which had been heat treated at 350 and 400 °C, possessed better thermal properties than the as-spun fibers, a large weight loss was observed only above 550 °C. Heat treatment of the fibers resulted in relatively high tensile strength and modulus. The fibers spun in Bath C (70/30, NMP/water, wt/wt) and Bath D (80/20, NMP/water, wt/wt) showed better thermal properties and higher tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. H. Yang, in Aromatic High-Strength Fibers, Wiley, New York, 1989, p 673.

    Google Scholar 

  2. K. Weinrotter and S. Seidl, in Handbook of Fiber Science and Technology, Marcel Dekker, New York, 1993, p 179.

    Google Scholar 

  3. S. K. Park and R. J. Farris, Polymer, 42, 10087 (2001).

    Article  CAS  Google Scholar 

  4. C. Neuber, H. W. Schmidt, and R. Giesa, Macromol. Mater. Eng., 291, 1315 (2006).

    Article  CAS  Google Scholar 

  5. Q. H. Zhang, M. Dai, M. X. Ding, D. J. Chen, and L. X. Gao, Eur. Polym. J., 40, 2487 (2004).

    Article  CAS  Google Scholar 

  6. W. M. Edwards, U.S. Patent 3,179,614 (1965).

  7. R. S. Irwin, U.S. Patent 3,415,782 (1968).

  8. M. M. Koton, U.K. Patent 1,183,306A (1970).

  9. M. M. Koton, U.K. Patent 2,025,311A (1980).

  10. N. R. Prokopchuk, Y. G. Baklagina, L. N. Korzhavin, A. V. Sidorovich, and M. M. Koton, Vysokomol. Soedin., A19, 1126 (1977).

    Google Scholar 

  11. N. R. Prokopchuk, L. N. Korzhavin, A. V. Sidorovich, I. S. Milevskaya, Y. G. Baklagina, and M. M. Koton, Dokl. Akad. Nauk SSSR, 236, 127 (1977).

    CAS  Google Scholar 

  12. T. E. Snkhanova, Y. G. Baklagina, V. V. Kudryavtsev, A. Maricheva, and F. Lednický, Polymer, 40, 6265 (1999).

    Article  Google Scholar 

  13. T. Kaneda, T. Katsur, K. Nakagawa, H. Makino, and M. Horio, J. Appl. Polym. Sci., 32, 3133 (1986).

    Article  CAS  Google Scholar 

  14. S. Hara, T. Yamada, and T. Yoshida, U.S. Patent 3,829,399 (1974).

    Google Scholar 

  15. M. Minami and M. Taniguchi, U.S. Patent 3,860,559 (1975).

    Google Scholar 

  16. K. Nagaoka, U.S. Patent 4,448,957 (1984).

  17. M. Eashoo, Z. Wu, A. Zhang, D. Shen, C. Tse, and F. W. Harris, Macromol. Chem. Phys., 195, 2207 (1994).

    Article  CAS  Google Scholar 

  18. K. Weinrotter, T. Jeszenszky, H. Schmidt, S. Baumann, and J. Kalleitner, U.S. Patent 4,801,502 (1989).

    Google Scholar 

  19. A. G. Lenzing, High Perform. Text, 7, 13 (1990).

    Google Scholar 

  20. W. J. Farrissey and B. K. Onder, U.S. Patent 3,985,934 (1976).

    Google Scholar 

  21. J. Z. Ren, Z. S. Li, and F. S. Wong, J. Membr. Sci., 241, 305 (2004).

    Article  CAS  Google Scholar 

  22. M. Eashoo, J. Leonard, A. K. Buckley, and S. T. Clair, J. Polym. Sci. Phys., 35, 173 (1997).

    Article  Google Scholar 

  23. J. C. Masson, in Acrylic Fiber Technology and Applications, Marcel Dekker, New York, 1995, p 65.

    Google Scholar 

  24. J. P. Knudsen, Tex. Res. J., 33, 13 (1963).

    CAS  Google Scholar 

  25. W. Albrecht, T. M. Weigel, K. Schossig-Tiedemann, K. V. Kneifel, and D. P. Peinemann, J. Membr. Sci., 192, 217 (2001).

    Article  CAS  Google Scholar 

  26. R. J. Dong, J. X. Zhao, Y. W. Zhang, and D. Pan, J. Polym. Sci. Phys., 47, 261 (2009).

    Article  CAS  Google Scholar 

  27. N. Peng, T. S. Chung, and K. Y. Wang, J. Membr. Sci., 318, 363 (2008).

    Article  CAS  Google Scholar 

  28. X. Y. Qiao, T. S. Chung, and K. P. Pramoda, J. Membr. Sci., 264, 176 (2005).

    Article  CAS  Google Scholar 

  29. J. Y. Kim, H. K. Lee, K. J. Baik, and S. C. Kim, J. Appl. Polym. Sci., 65, 2643 (1997).

    Article  CAS  Google Scholar 

  30. J. H. Kim, B. R. Min, J. Won, H. C. Park, and Y. S. Kang, J. Membr. Sci., 187, 47 (2001).

    Article  CAS  Google Scholar 

  31. R. M. Boom, T. Van den Boomgaard, J. W. A. Van den Berg, and C. A. Smolders, Polymer, 34, 2348 (1993).

    Article  CAS  Google Scholar 

  32. H. Tompa, in Polymer Solutions, Butterworths, London, 1956, p 183.

    Google Scholar 

  33. A. Ziabicki, in Fundamentals of Fibre Formation, Shanghai Science and Technology Press, Shanghai, 1983, p 315.

    Google Scholar 

  34. D. L. Wang, K. Li, S. Sourirajan, and W. K. Teo, J. Appl. Polym. Sci., 50, 1693 (1993).

    Article  CAS  Google Scholar 

  35. D. L. Wang, K. Li, and W. K. Teo, J. Membr. Sci., 98, 233 (1995).

    Article  CAS  Google Scholar 

  36. J. H. Sung, H. S. Kim, H. J. Jin, H. J. Choi, and I. J. Chin, Macromolecules, 37, 9899 (2004).

    Article  CAS  Google Scholar 

  37. J. N. Barsema, G. C. Kapantaidakis, N. F. A. Van der Vegt, G. H. Koops, and M. Wessling, J. Membr. Sci., 216, 195 (2003).

    Article  CAS  Google Scholar 

  38. T. S. Chung, S. K. Teoh, and X. Hu, J. Membr. Sci., 133, 161 (1997).

    Article  CAS  Google Scholar 

  39. J. Z. Ren, Z. S. Li, and R. Wang, J. Membr. Sci., 309, 196 (2008).

    Article  CAS  Google Scholar 

  40. J. Barzin and B. Sadatnia, Polymer, 48, 1620 (2007).

    Article  CAS  Google Scholar 

  41. R. J. Ray, W. B. Krantz, and R. L. Sani, J. Membr. Sci., 23, 155 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zu Ming Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, H.B., Huang, Z., Liu, L.Q. et al. Structure and properties of polyimide (BTDA-TDI/MDI co-polyimide) fibers obtained by wet-spinning. Macromol. Res. 19, 645–653 (2011). https://doi.org/10.1007/s13233-011-0709-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-011-0709-z

Keywords

Navigation