Skip to main content
Log in

Integral Representations of the Large and Little Schröder Numbers

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the paper, the authors establish several integral representations for the generating functions of the large and little Schröder numbers and for the large and little Schröder numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci., 41(2) (1988), 21–23.

    MathSciNet  MATH  Google Scholar 

  2. C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math., 1(4) (2004), 433–439; Available online at http://dx.doi.org/10.1007/s00009-004-0022-6.

    Article  MathSciNet  MATH  Google Scholar 

  3. R. A. Brualdi, Introductory combinatorics, Fifth Edition, Pearson Prentice Hall, Upper Saddle River, NJ, 2010.

    MATH  Google Scholar 

  4. C.-P. Chen, F. Qi and H. M. Srivastava, Some properties of functions related to the gamma and psi functions, Integral Transforms Spec. Funct., 21(2) (2010), 153–164; Available online at http://dx.doi.org/10.1080/10652460903064216.

    Article  MathSciNet  MATH  Google Scholar 

  5. B.-N. Guo and F. Qi, A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a power-exponential function, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 72(2) (2010), 21–30.

    MathSciNet  MATH  Google Scholar 

  6. B.-N. Guo and F. Qi, On the degree of the weighted geometric mean as a complete Bernstein function, Afr. Mat., 26(7) (2015), 1253–1262; Available online at http://dx.doi.org/10.1007/s13370-014-0279-2.

    Article  MathSciNet  MATH  Google Scholar 

  7. B.-N. Guo and F. Qi, Some explicit and recursive formulas of the large and little Schröder numbers, Arab J. Math. Sci., 23(2) (2017), 141–147, Available online at http://dx.doi.org/10.1016/j.ajmsc. 2016.06.002.

    MathSciNet  MATH  Google Scholar 

  8. T. Koshy, Catalan numbers with applications, Oxford University Press, Oxford, 2009.

    Google Scholar 

  9. D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993; Available online at http://dx.doi.org/10.1007/978-94-017-1043-5.

    Google Scholar 

  10. F. Qi and C.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl., 296 (2004), 603–607; Available online at http://dx.doi.org/10.1016/j.jmaa.2004.04.026.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll., 7(1) (2004), Art. 8, 63-72; Available online at http://rgmia.org/v7n1.php.

    Google Scholar 

  12. F. Qi and B.-N. Guo, Explicit and recursive formulas, integral representations, and properties of the large Schröder numbers, Kragujevac J. Math., 41(1) (2017), 121–141.

    Article  MathSciNet  Google Scholar 

  13. F. Qi and B.-N. Guo, Integral representations of the Catalan numbers and their applications, Mathematics, 5(3) (2017), Article 40, 31 pages; Available online at https://doi.org/10.3390/math5030040.

    Google Scholar 

  14. F. Qi and B.-N. Guo, Some properties and generalizations of the Catalan, Fuss, and Fuss-Catalan numbers, Chapter 5 in Mathematical Analysis and Applications: Selected Topics, First Edition, 101-133; Edited by Michael Ruzhansky, Hemen Dutta, and Ravi P. Agarwal; Published by John Wiley & Sons, Inc. 2018.

    Google Scholar 

  15. F. Qi and B.-N. Guo, The reciprocal of the weighted geometric mean is a Stieltjes function, Bol. Soc. Mat. Mex., 24(3) (2018), in press; Available online at: https://doi.org/10.1007/s40590-016-0151-5.

    Google Scholar 

  16. F. Qi and B.-N. Guo, The reciprocal of the weighted geometric mean of many positive numbers is a Stieltjes function, Quaest. Math., 41 (2018), in press; Available online at https://doi.org/10.2989/16073606.2017.1396508.

  17. F. Qi and D. Lim, Integral representations of bivariate complex geometric mean and their applications, J. Comput. Appl. Math., 330 (2018), 41–58; Available online at https://doi.org/10.1016/j.cam.2017.08.005.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Qi, X.-T. Shi, and B.-N. Guo, Integral representations of the large and little Schröder numbers, ResearchGate Working Paper (2016), available online at http://dx.doi.org/10.13140/RG.2.1.1988.3288.

    Google Scholar 

  19. F. Qi, X.-T. Shi and B.-N. Guo, Some properties of the Schröder numbers, Indian J. Pure Appl. Math., 47(4) (2016), 717–732; Available online at http://dx.doi.org/10.1007/s13226-016-0211-6.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Qi, X.-T. Shi and B.-N. Guo, Two explicit formulas of the Schröder numbers, Integers, 16 (2016), Paper No. A23, 15 pages.

  21. F. Qi, X.-J. Zhang and W.-H. Li, An integral representation for the weighted geometric mean and its applications, Acta Math. Sin. (Engl. Ser)., 30(1) (2014), 61–68; Available online at http://dx.doi.org/10.1007/s10114-013-2547-8.

    Article  MathSciNet  MATH  Google Scholar 

  22. F. Qi, X.-J. Zhang and W.-H. Li, Lévy-Khintchine representation of the geometric mean of many positive numbers and applications, Math. Inequal. Appl., 17(2) (2014), 719–729; Available online at http://dx.doi.org/10.7153/mia-17-53.

    MathSciNet  MATH  Google Scholar 

  23. F. Qi, X.-J. Zhang and W.-H. Li, Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean, Mediterr. J. Math., 11(2) (2014), 315–327; Available online at http://dx.doi.org/10.1007/s00009-013-0311-z.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Qi, X.-J. Zhang and W.-H. Li, The harmonic and geometric means are Bernstein functions, Bol. Soc. Mat. Mex. (3), 23(2) (2017), 713–736. Available online at http://dx.doi.org/10.1007/s40590-016-0085-y.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Qi, Q. Zou and B.-N. Guo, Some identities and a matrix inverse related to the Chebyshev polynomials of the second kind and the Catalan numbers, Preprints, 2017, 2017030209, 25 pages; Available online at https://doi.org/10.20944/preprints201703.0209.v2.

    Google Scholar 

  26. R. L. Schilling, R. Song, and Z. Vondraček, Bernstein functions—Theory and applications, 2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012; Available online at http://dx.doi.org/10.1515/9783110269338.

    Google Scholar 

  27. D. V. Widder, The Laplace transform, Princeton Mathematical Series 6, Princeton University Press, Princeton, N. J., 1941.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, F., Shi, XT. & Guo, BN. Integral Representations of the Large and Little Schröder Numbers. Indian J Pure Appl Math 49, 23–38 (2018). https://doi.org/10.1007/s13226-018-0258-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-018-0258-7

Key words

Navigation