Skip to main content
Log in

An integral representation for the weighted geometric mean and its applications

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

By virtue of Cauchy’s integral formula in the theory of complex functions, the authors establish an integral representation for the weighted geometric mean, apply this newly established integral representation to show that the weighted geometric mean is a complete Bernstein function, and find a new proof of the well-known weighted arithmetic-geometric mean inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckenbach, E. F., Bellman, R.: Inequalities, Springer-Verlag, Berlin, 1983

    Google Scholar 

  2. Bullen, P. S.: Handbook of Means and Their Inequalities, Mathematics and its Applications, Volume 560, Kluwer Academic Publishers, Dordrecht-Boston-London, 2003

    Google Scholar 

  3. Gamelin, T. W.: Complex Analysis, Undergraduate Texts in Mathematics, Springer, Berlin, 2001

    Google Scholar 

  4. Guo, B.-N., Qi, F.: The function (b xa x)/x: Logarithmic convexity and applications to extended mean values. Filomat, 25(4), 63–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hardy, G. H., Littlewood, J. E., Pólya, G.: Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952

    MATH  Google Scholar 

  6. Kuang, J.-C.: Applied Inequalities (in Chinese), 3rd ed., Shandong Science and Technology Press, Ji’nan, China, 2004

    Google Scholar 

  7. Mitrinović, D. S.: Analytic Inequalities, Springer, New York-Heidelberg-Berlin, 1970

    MATH  Google Scholar 

  8. Mitrinović, D. S., Pečarić, J. E., Fink, A. M.: Classical and New Inequalities in Analysis, Kluwer Academic Publishers, 1993

    Book  MATH  Google Scholar 

  9. Mitrinović, D. S., Vasić, P. M.: Sredine, Matematička Biblioteka, 40, Beograd, 1969

  10. Qi, F.: Complete monotonicity of logarithmic mean. RGMIA Res. Rep. Coll., 10(1), Art. 18 (2007)

    Google Scholar 

  11. Qi, F.: Integral representations and properties of Stirling numbers of the first kind. J. Number Theory, 133(7), 2307–2319 (2013)

    Article  MathSciNet  Google Scholar 

  12. Qi, F., Chen, S.-X.: Complete monotonicity of the logarithmic mean. Math. Inequal. Appl., 10(4), 799–804 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Schilling, R. L., Song, R., Vondraček, Z.: Bernstein Functions, de Gruyter Studies in Mathematics 37, De Gruyter, Berlin, Germany, 2010

    Google Scholar 

  14. Widder, D. V.: The Laplace Transform, Princeton University Press, Princeton, 1946

    Google Scholar 

  15. Zhong, Y.-Q.: Theory of Complex Functions (in Chinese), 3rd ed., Higher Education Press, Beijing, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Qi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, F., Zhang, X.J. & Li, W.H. An integral representation for the weighted geometric mean and its applications. Acta. Math. Sin.-English Ser. 30, 61–68 (2014). https://doi.org/10.1007/s10114-013-2547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-013-2547-8

Keywords

MR(2010) Subject Classification

Navigation