Skip to main content
Log in

An efficient method for nonlinear fractional differential equations: combination of the Adomian decomposition method and spectral method

  • Published:
Indian Journal of Pure and Applied Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a novel iterative method is employed to give approximate solutions of nonlinear differential equations of fractional order. This approach is based on combination of two different methods which are the Adomian decomposition method (ADM) and the spectral Adomian decomposition method (SADM). The method reduces the nonlinear differential equations to systems of linear algebraic equations and then the resulting systems are solved by a numerical method. Investigating some illustrations, we demonstrate that the obtained numerical results are in a very good agreement with the exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Podlubny, Fractional differential equations, Academic Press, San Diego, CA, 1999.

    MATH  Google Scholar 

  2. K. B. Oldham and J. Spanier, The fractional calculus, Academic Press, New York, London, 1974.

    MATH  Google Scholar 

  3. K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, 1993.

    MATH  Google Scholar 

  4. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.

    MATH  Google Scholar 

  5. R. Gorenflo and F. Mainardi, Fractional calculus: integral and differential equations of fractional order, In: A. Carpinteri, F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien/New York, 1997, pp. 223–276.

    Chapter  Google Scholar 

  6. R. Groreflo and A. Y. Luchko, The initial value problem for some fractional differential equations with the Caputo derivative, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998.

    Google Scholar 

  7. F. Mainardi, Fractional Calculus: some basic problems in continuum and statistical mechanics, In: A. Carpinteri, F. Mainardi (Eds), Fractals and Fractional Calculus in Continuum Mechanics, SpringerVerlag, Wien/New York, 1997, pp. 291–348.

    Chapter  Google Scholar 

  8. J. S. Duan, Time- and space-fractional partial differential equations, J. Math. Phys., 46 (2005), 13504- 13511.

    Article  Google Scholar 

  9. J. S. Duan and M. Y. Xu, The problem for fractional diffusion-wave equations on finite interval and Laplace transform, AppL Meth. J. Chinese Univ. Ser. A, 19 (2004), 165–171 (in Chinese with English abstract).

    MATH  MathSciNet  Google Scholar 

  10. J. S. Duan, T. Chaolu and J. Sun, Solution for system of linear fractional differential equations with constant coefficients, J. Math., (Wuhan), 29 (2009), 599–603.

    MATH  MathSciNet  Google Scholar 

  11. J. S. Duan and T. Chaolu, Scale-invariant solution for fractional anomalous diffusion equation, Ann. Differential Eqs., 22 (2006), 21–26.

    MATH  MathSciNet  Google Scholar 

  12. J. S. Duan, A. P. Guo and W. Z. Yun, Similarity method to solve fractional diffusion model in fractal media, J. Biomath., 25 (2010), 218–224.

    Google Scholar 

  13. V. Daftardar-Gejji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301 (2005), 508–518.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. S. Ray and R. K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, AppL Math. Comput., 167 (2005), 561–571.

    Article  MATH  MathSciNet  Google Scholar 

  15. S. Momani and N. Shawagfeh, Decomposition method for solving fractional Riccati differential equations, App1. Math. Comput., 182 (2006), 1083–1092.

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Momani, A numerical sbeme for the solution of multi-order fractional differential equations, Appl. Math. Comput., 182 (2006), 761–170.

    Article  MATH  MathSciNet  Google Scholar 

  17. J. S. Duan, J. Y. An and M. Y. Xu, Solution of system of fractional differential equations by Adomian decomposition method, Appl. Math. J. Chinese Univ. Ser. B, 22 (2007), 7–12.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. M. A. El-Sayed, S. H. Behiry and W. E. Raslan, Adomian’s decomposition method for solving an intermediate fractional advection-dispersion equation, Comput. Math. Appl., 59 (2010), 1759–1765.

    Article  MATH  MathSciNet  Google Scholar 

  19. G. C. Wu, Adomian decomposition method for non-smooth initial value problems, Math. Comput. Modelling, 54 (2011), 2104–2108.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. S. Duan, J. Sun and T. Chaolu, Noulinear fractional differential equation combining Duffing equation and van der Pol equation, J. Math. (Wuhan), 31 (2011), 7–10.

    MathSciNet  Google Scholar 

  21. J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods AppL Mech. Engrg., 167 (1998), 57–68.

    Article  MATH  MathSciNet  Google Scholar 

  22. Q. Wang, Homotopy pertorbation method for fractional Kdv equation, Appl. Math. Comput., 190 (2007), 1795–1802.

    Article  MATH  MathSciNet  Google Scholar 

  23. L. Song and H. Zhang, Application of homotopy analysis method to fractional Kdv-Burgers-Koramoto equation, Phys. Lett. A, 367 (2007), 88–94.

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Xu, S. J. Liao and X. C. You, Analysis of nonlinear fractional partial dllferential equations with the homotopy analysis method, Commun. Nonlinear Sci Numer. Simulat., 14 (2009), 1152–1156.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Saadatmandi and M. Dehghan, A new operational matrix for solving fractional-order dllferential equations, Comput. Math. Appl., 59 (2010), 1326–1336.

    Article  MATH  MathSciNet  Google Scholar 

  26. J. S. Duan, Z. H. Liu, F. K. Zhang and T. Chaolu, Analytical solution and numerical solution to endolymph equation using fractional derivative, Ann. Differential Eqs., 24 (2008), 9–12.

    MATH  MathSciNet  Google Scholar 

  27. K. Dieth, N. J. Ford and A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31–52.

    Article  MathSciNet  Google Scholar 

  28. C. Li and Y. Wang, Numerical algorithm based on Adomian decomposition for fractional dllferential equations, Comput. Math. Appl., 57 (2009), 1672–1681.

    Article  MATH  MathSciNet  Google Scholar 

  29. G. C. Wu, A fractional characteristic method for solving fractional partial differential equations, Appl. Math. Lett., 24 (2011), 1046–1050.

    Article  MATH  MathSciNet  Google Scholar 

  30. G. Adomian, Nonlinear stochastic operator equations, Academic, Orlando, 1986.

    MATH  Google Scholar 

  31. G. Adomian, Nonlinear Stochastic Systems Theory and Applications to PhYsics, Kluwer, Academic, Dordrecht, 1989.

    Book  MATH  Google Scholar 

  32. G. Adomian, R. Rach and R. Meyers, An efficient methodology for the physical sciences, Kybernetes, 20 (1991), 24–34.

    Article  MATH  MathSciNet  Google Scholar 

  33. G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer, Academic, Dordrecht, 1994.

    Book  MATH  Google Scholar 

  34. A. M. Wazwaz, Partial Differential Equations: Methods and Applications, Balkema, lisse, 2002.

    Google Scholar 

  35. A. M. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Higher Education, Beijing, Springer, Berlin, 2009.

    Book  MATH  Google Scholar 

  36. A.M. Wazwaz, Linear and Nonlinear Integral Equations: Methods and Applications, Higher Education, Beijing, Springer, Berlin, 2011.

    Book  Google Scholar 

  37. M. M. Hosseini and H. Nasabzadeh, On the convergence of Adomian decomposition method, Appl. Math. Comput., 182 (2006), 536–543.

    Article  MATH  MathSciNet  Google Scholar 

  38. J. Sherr and T. Tang, High Order Numerical Methods and Algorithms, Chinese Science Press, Beijing, 2005.

    Google Scholar 

  39. S. Kazem, S. Abbasbandy and Sunil Kumar, Fractional-order Legendre functions for solving fractionalorder dllferential equations, Appl. Math. Modelling, 37 (2013), 5498–5510.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Vahidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babolian, E., Vahidi, A.R. & Shoja, A. An efficient method for nonlinear fractional differential equations: combination of the Adomian decomposition method and spectral method. Indian J Pure Appl Math 45, 1017–1028 (2014). https://doi.org/10.1007/s13226-014-0102-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13226-014-0102-7

Key words

Navigation