Skip to main content
Log in

Numerical Solutions for Systems of Nonlinear Fractional Ordinary Differential Equations Using the FNDM

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A new technique has been developed for analytical solutions of fractional order nonlinear ODE system. We propose a reliable method called the fractional natural decomposition method (FNDM). The FNDM is based on the natural transform method (NTM) and the Adomian decomposition method. We use the FNDM to construct new analytical approximate and exact solutions to systems of nonlinear fractional ordinary differential equation (NLFODEs). The fractional derivatives are described in the Caputo sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adomian G.: Solving frontier problems of physics: the decomposition method. Kluwer Academic Publisher, Boston (1994)

    Book  MATH  Google Scholar 

  2. Adomian G.: A new approach to nonlinear partial differential equations. J. Math. Anal. Appl. 102, 420–434 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Belgacem F.B.M., Silambarasan R.: Maxwell’s equations by means of the natural transform. Math. Eng. Sci. Aerosp. 3(3), 313–323 (2012)

    MATH  Google Scholar 

  4. Caputo M.: Elasticitae Dissipazione. Zanichelli, Bologna (1969)

    Google Scholar 

  5. Caputo M., Mainardi F.: Linear models of dissipation in anelastic solids. Riv. del Nuovo Cimento. 1, 161–198 (1971)

    Article  Google Scholar 

  6. Garg M., Manohar P.: Numerical solution of fractional diffusion-wave equation with two space variables by matrix method. Fract. Calc. Appl. Anal. 13(2), 191–207 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Garg M., Sharma A.: Solution of space-time fractional telegraph equation by Adomian decomposition method. J. Inequal. Spec. Funct. 2(1), 1–7 (2011)

    MathSciNet  MATH  Google Scholar 

  8. He J.H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167, 57–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hilfer R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  10. Jafari H., Nazari M., Baleanu D., Khalique C.M.: A new approach for solving a system of fractional partial differential equations. Comput. Math. Appl. 66, 838–843 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jafari H., Seifi S.: Solving system of nonlinear fractional partial differention equations by homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 1962–1969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Katatbeh Q.D., Belgacem F.B.M.: Applications of the Sumudu transform to fractional differential equations. Nonlinear Stud. 18(1), 99–112 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Khan Z.H., Khan W.A.: N-transform properties and applications. NUST J. Engg. Sci. 1(1), 127–133 (2008)

    Google Scholar 

  14. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  15. Kruskal M.D., Moser J.: Dynamical Systems, Theory and Applications, Lecturer Notes Physics, pp. 3–10. Springer, Berlin (1975)

    Google Scholar 

  16. Kumar, D.; Singh J.; Kiliman A.: An efficient approach for fractional Harry Dym equation by using Sumudu transform, abstract and applied analysis. Article ID 608943, pp. 8 (2013)

  17. Loonker D., Banerji P.K.: Solution of fractional ordinary differential equations by natural transform. Int. J. Math. Eng. Sci. 2(12), 2277–6982 (2013)

    MATH  Google Scholar 

  18. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  19. Momani S., Al–Khaled K.: Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162(3), 1351–1365 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Podlubny I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  21. Rawashdeh M., Maitama S.: Solving nonlinear ordinary differential equations using the NDM. J. Appl. Anal. Comput. 5(1), 77–88 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Rawashdeh, M.S.: Solving fractional ordinary differential equations using FNTM. Thai J. Math. (2016) (In press)

  23. Rawashdeh M., Maitama S.: Solving coupled system of nonlinear PDEs using the natural decomposition method. Int. J. Pure Appl. Math. 92(5), 757–776 (2014)

    Article  Google Scholar 

  24. Rawashdeh M., Maitama S.: Solving PDEs using the natural decomposition method. Nonlinear Stud. 23(1), 63–72 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Rawashdeh M.: An efficient approach for time-fractional damped burger and Time–Sharma–Tasso–Olver equations using The FRDTM. Appl. Math. Inf. Sci. 9(3), 1–8 (2015)

    MathSciNet  Google Scholar 

  26. Rawashdeh M.: A new approach to solve the fractional Harry Dym equation using the FRDTM. Int. J. Pure Appl. Math. 95(4), 553–566 (2014)

    Article  MathSciNet  Google Scholar 

  27. Ray S.S., Bera R.K.: An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method. Appl. Math. Comput. 167, 561–571 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Wang Q.: Homotopy perturbation method for fractional KdV-Burgers equation. Chaos Solitons Fractals 35, 843–850 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yildirim A.: He’s homotopy perturbation method for solving the space and time fractional telegraph equations. Int. J. Comput. Math. 87(13), 2998–3006 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang C., Hou J.: An approximate solution of nonlinear fractional differential equation by Laplace transform and adomian polynomials. J. Inf. Comput. Sci. 10, 213–222 (2013)

    Google Scholar 

  31. Zurigat M., Momani S., Odibat Z., Alawneh A.: The homotopy analysis method for handling systems of fractional differential equations. Appl. Math. Model. 34(1), 24–35 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud S. Rawashdeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rawashdeh, M.S., Al-Jammal, H. Numerical Solutions for Systems of Nonlinear Fractional Ordinary Differential Equations Using the FNDM. Mediterr. J. Math. 13, 4661–4677 (2016). https://doi.org/10.1007/s00009-016-0768-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0768-7

Mathematics Subject Classification

Keywords

Navigation