Skip to main content
Log in

Symbiotic interactions as drivers of trade-offs in plants: effects of fungal endophytes on tall fescue

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Studying the controls on biomass allocation trade-offs in plants are important since they affect harvestable product yields and are critical to understanding symbiotic interactions. Epichloae fungal endophytes associate with cool-season grasses, growing systemically within the plant inter-cellular spaces and are transmitted through seeds. We explore the endophytes influence on the relationship between the plant reproductive and vegetative aboveground biomass (reproductive effort: RE) and on the trade-off between two components of the reproductive biomass, number and weight of panicles (RPN), using tall fescue as a model system. Naturally endophyte-colonized, manipulatively endophyte-free, and naturally endophyte-free plants from Northern European wild-populations together with the cultivar Kentucky-31 were grown under different environmental conditions (nutrients x water). The endophyte had an effect on the RPN (E+: 6.19, ME-: 4.68 and E-: 4.40) which indicates how reproductive biomass is partitioned into number and mass of panicles, but not on RE (≈0.06). As expected, wild plants showed higher reproductive effort (≈0.06) compared to the cultivar KY-31 (0.05), irrespective of endophyte presence. Endophyte-colonized plants had lighter panicles than endophyte-free plants, a pattern that was clear among low-yielding plants. Similarly, the trade-off between RPN and RE was higher for endophyte-colonized plants. This was again evident among plants with low RE indicating that colonized plants split the yield into either greater number of panicles and/or lighter panicles. The effect of vertically transmitted endophytes has earlier been studied as ratios (e.g. RE); however, our study shows that this approach may hide size-dependent endophyte effects on these relationships. Our study reveals that Neotyphodium endophyte affects trade-offs in tall fescue plants in a complex manner, and is influenced by a number of biological and abiotic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afkhami ME, Rudgers JA (2008) Symbiosis lost: imperfect vertical transmission of fungal endophytes in grasses. Am Nat 172:405–416

    Article  PubMed  Google Scholar 

  • Agrawal AA (2000) Overcompensation of plants in response to herbivory and the by-product benefits of mutualism. Trends Plant Sci 5(7):309–313

    Article  PubMed  CAS  Google Scholar 

  • Ahlholm JU, Helander M, Lehtimäki S, Wäli P, Saikkonen K (2002) Vertically transmitted endophytes: effects of environmental conditions. Oikos 99:173–183

    Article  Google Scholar 

  • Bean EW (1970) Short-day and low-temperature control of floral induction in Festuca. Ann Bot 34(1):57–66

    Google Scholar 

  • Bever JD, Richardson SC, Lawrence BM, Holmes J, Watson M (2009) Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol Lett 12:13–21

    Article  PubMed  Google Scholar 

  • Bonser SP, Aarssen LW (2009) Interpreting reproductive allometry: individual strategies of allocation explain size-dependent reproduction in plant populations. Perspect Plant Ecol 11:31–40

    Article  Google Scholar 

  • Bouton JH, Gates RN, Hoveland CS (2001) Selection for persistence in endophyte-free Kentucky 31 Tall Fescue. Crop Sci 41:1026–1028

    Article  Google Scholar 

  • Bronstein JL (1994) Our current understanding of mutualism. Q Rev Biol 69(1):31–51

    Article  Google Scholar 

  • Bush LP, Wilkinson HH, Schardl C (1997) Bioprotective alkaloids of grass-funga endophyte symbioses. Plant Physiol 114:1–7

    PubMed  CAS  Google Scholar 

  • Cheplick GP (2011) Endosymbiosis and population differentiation in wild and cultivated Lolium perenne (Poaceae). Am J Bot 98(5):829–838

    Article  PubMed  Google Scholar 

  • Cheplick GP, Faeth SH (2009) Ecology and evolution of the grass endophyte symbiosis. Oxford University Press, NY

    Book  Google Scholar 

  • Cheplick GP, Clay K, Marks S (1989) Interactions between infection by endophytic fungi and nutrient limitation in the grasses Lolium perenne and Festuca arundinacea. New Phytol 111(1):89–97

    Article  Google Scholar 

  • Clay K, Schardl C (2002) Evolutionary origin and ecological consequences of endophyte symbiosis with grasses. Am Nat 160:S99–S127

    Article  PubMed  Google Scholar 

  • De Battista JP, Bouton JH, Bacon CW, Siegel MR (1990) Rhizome and herbage production of endophyte-removed tall fescue clones and populations. Agron J 826:651–654

    Article  Google Scholar 

  • Denison RF, Kiers ET, West SA (2003) Darwinian agriculture: when can humans find solutions beyond the reach of natural selection? Q Rev Biol 78:145–168

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL

  • Dierking RM, Young CA, Kallenbach RL (2012) Mediterranean and Continental tall fescue: I. Effects of endophyte status on leaf extension, proline, monoand disaccharides, fructan, and freezing survivability. Crop Sci 52:451–459

    Article  Google Scholar 

  • Ewald PW (1987) Transmission modes and evolution of the parasitism-mutualism continuum. Ann New York Acad Sci 503:295–306

    Article  CAS  Google Scholar 

  • Faeth SH (2002) Are endophytic fungi defensive plant mutualists? Oikos 98:25–36

    Article  Google Scholar 

  • Faeth SH (2009) Asexual fungal symbionts alter reproductive allocation and herbivory over time in their native perennial grass hosts. Am Nat 173:554–565

    Article  PubMed  Google Scholar 

  • Gibson DJ, Newman JA (2001) Festuca arundinacea Schreber (F. elatior L. ssp. arundinacea (Schreber) Hackel). J Ecol 89:304–324

    Article  Google Scholar 

  • Grime JP, Hodgson JG, Hunt R (1988) Comparative plant ecology. Unwin, Hyman, London

    Google Scholar 

  • Gundel PE, Omacini M, Sadras VO, Ghersa CM (2010) The interplay between the effectiveness of the grass–endophyte mutualism and the genetic variability of the host plant in an agronomic context. Evol Appl 3(5–6):538–546

    Article  Google Scholar 

  • Gundel PE, Rudgers JA, Ghersa CM (2011) Incorporating the process of vertical transmission into understanding of host – symbiont dynamics. Oikos 120:1121–1128

    Article  Google Scholar 

  • Gundel PE, Garibaldi LA, Martínez-Ghersa MA, Ghersa CM (2012) Trade-off between seed number and weight: influence of a grass-endophyte symbiosis. Basic Appl Ecol 13:32–39

    Article  Google Scholar 

  • Gundel PE, Helander M, Casas C, Hamilton CE, Faeth SH, Saikkonen K (2013) Neotyphodium fungal endophyte in tall fescue (Schedonorus phoenix): 1 A comparison of three Northern European wild populations and the cultivar Kentuky-31. Fungal Divers. doi:10.1007/s13225-012-0173-x

    Google Scholar 

  • Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49

    Article  Google Scholar 

  • Hamilton CE, Dowling TE, Faeth SH (2010) Hybridization in endophyte symbionts alters host response to moisture and nutrient treatments. Microb Ecol 59:768–775

    Article  PubMed  Google Scholar 

  • Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10

    Article  Google Scholar 

  • Hesse U, Schöberlein W, Wittenmayer L, Förster K, Warnstorff K, Diepenbrock W, Merbach W (2003) Effects of Neotyphodium endophytes on growth, reproduction and drought-stress tolerance of three Lolium perenne L. genotypes. Grass Forage Sci 58(4):407–415

    Article  Google Scholar 

  • Hoeksema JD (2010) Ongoing coevolution in mycorrhizal interactions. New Phytol 187:286–300

    Article  PubMed  Google Scholar 

  • Johnson NC, Graham J-H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135(4):575–585

    Article  Google Scholar 

  • Kiers ET, West SA, Denison RF (2002) Mediating mutualisms: farm management practices and evolutionary changes in symbiont co-operation. J Appl Ecol 39(5):745–754

    Article  Google Scholar 

  • Koivunen S, Saikkonen K, Vuorisalo T, Mutikainen P (2004) Life-history traits of Potentilla anserina on heavy-metal polluted soils. Evol Ecol 18:541–561

    Article  Google Scholar 

  • Law R (1979) The cost of reproduction in annual meadow grass. Am Nat 113(1):3–16

    Article  Google Scholar 

  • Lehtilä K, Sundås Larsson A (2005) In: Reekie EG, Bazzaz FA (eds) Reproductive allocation in plants. Academic Press Elsevier, New York

    Google Scholar 

  • Murphy JS, Briske DD (1992) Regulation of tillering by apical dominance: chronology, interpretive value, and current perspectives. J Range Manage 45:419–429

    Article  Google Scholar 

  • Niklas KJ (1994) Plant allometry. University of Chicago Press, Chicago

    Google Scholar 

  • Piano E, Bertoli FB, Romani M, Tava A, Riccioni L, Valvassori M, Carroni AM, Pecetti L (2005) Specificity of host-endophyte association in Tall Fescue populations from Sardinia, Italy. Crop Sci 45:1456–1463

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D. R Development Core Team (2011) nlme: linear and nonlinear mixed effects models. R package version 3.1–100

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193:30–50

    Article  PubMed  CAS  Google Scholar 

  • Reekie E, Bazzaz FA (eds) (2005) Reproductive allocation in plants. Elsevier Academic Press, USA

    Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136(4):667–677

    Article  Google Scholar 

  • Rice JS, Pinkerton BW, Stringer WC, Undersander DJ (1990) Seed production in tall fescue as affected by fungal endophyte. Crop Sci 30:1303–1305

    Article  Google Scholar 

  • Rudgers JA, Afkhami ME, Rua MA, Davitt AJ, Hammer S, Huguet VM (2009) A fungus among us: broad patterns of endophyte distribution in the grasses. Ecology 90:1531–1539

    Article  PubMed  Google Scholar 

  • Saari S, Helander M, Faeth SH, Saikkonen K (2010) The effects of endophytes on seed production and seed predation of tall fescue and meadow fescue. Microb Ecol 60:928–934

    Article  PubMed  Google Scholar 

  • Sadras VO (2007) Evolutionary aspects of the trade-off between seed size and number in crops. Field Crop Res 100:125–138

    Article  Google Scholar 

  • Saha DC, Jackson MA, Johonson-Cicalese JM (1988) A rapid staining method for detection of endophytic fungi in turf and forage grasses. Phytopathology 78:237–239

    Article  CAS  Google Scholar 

  • Saikkonen K (2000) Kentucky 31, far from home. Science 287:1887a

    Article  Google Scholar 

  • Saikkonen K, Faeth SH, Helander ML, Sullivan TJ (1998a) Fungal endophytes: a continuum of interactions with host plants. Ann Rev Ecol Syst 29:319–343

    Article  Google Scholar 

  • Saikkonen K, Koivunen S, Vuorisalo T, Mutikainen P (1998b) Interactive effects of reproductive manipulation and growth-limiting heavy-metal pollution on resource allocation in Potentilla anserina L. Ecology 79:1620–1629

    Google Scholar 

  • Saikkonen K, Wäli P, Helander M, Faeth SH (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Lehtonen P, Helander M, Koricheva J, Faeth SH (2006) Model systems in ecology: dissecting the endophyte-grass literature. Trends Plant Sci 11(9):428–433

    Article  PubMed  CAS  Google Scholar 

  • Saikkonen K, Wäli PR, Helander M (2010) Genetic compatibility determines endophyte-grass combinations. PLoS One 5(6):e11395. doi:10.1371/journal.pone.0011395

    Article  PubMed  Google Scholar 

  • Saikkonen K, Taulavuori K, Hyvönen T, Gundel PE, Hamilton CE, Vänninen I, Nissinen A, Helander M (2012) Climate change driven species’ range shifts filtered by photoperiodism. Nat Clim Chang 2:239–242

    Article  Google Scholar 

  • Samson DA, Werk KS (1986) Size-dependent effects in the analysis of reproductive effort in plants. Am Nat 127(5):667–680

    Article  Google Scholar 

  • Schardl CL (2010) The Epichloae, symbionts of the grass subfamily Poöideae. Ann MO Bot Gard 97:646–665

    Article  Google Scholar 

  • Tadych M, Ambrose KV, Bergen MS, Belanger FC, White JF Jr (2012) Taxonomic placement of Epichloë poae sp. nov. and horizontal dissemination to seedlings via conidia. Fungal Divers 54:117–131

    Article  Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thrall PH, Laine A-L, Broadhurst LM, Bagnall DJ, Brockwell J (2011) Symbiotic effectiveness of rhizobial mutualists varies in interactions with native Australian legume genera. PLoS One 6(8):e23545. doi:10.1371/journal.pone.0023545

    Article  PubMed  CAS  Google Scholar 

  • van Zijll de Jong E, Dobrowolski MP, Sandford A, Smith KF, Willocks MJ, Spangenberg GC, Forster JW (2008) Detection and characterisation of novel fungal endophyte genotypic variation in cultivars of perennial ryegrass (Lolium perenne L.). Aust J Agr Res 59:214–221

    Article  CAS  Google Scholar 

  • Vesterlund S-R, Helander M, Faeth SH, Hyvönen T, Saikkonen K (2011) Environmental conditions and host plant origin override endophyte effects on invertebrate communities. Fungal Divers 47:109–118

    Article  Google Scholar 

  • Vila-Aiub MM, Gundel PE, Ghersa CM (2005) Fungal endophyte infection changes growth attributes in Lolium multiflorum Lam. Austral Ecol 30:49–57

    Article  Google Scholar 

  • Weiner J (2004) Allocation, plasticity and allometry in plants. Perspect Plant Ecol 6(4):207–215

    Article  Google Scholar 

  • Weiner J, Campbell LG, Pino J, Echarte L (2009) The allometry of reproduction within plant populations. J Ecol 97:1220–1233

    Article  Google Scholar 

  • Western D (2001) Human-modified ecosystems and future evolution. P Natl Acad Sci USA 98(10):5458–5465

    Article  CAS  Google Scholar 

  • Zhang Q, Zhang L, Weiner J, Tang J, Chen X (2011) Arbuscular mycorrhizal fungi alter plant allometry and biomass-density relationships. Ann Bot 107(3):407–412

    Article  PubMed  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, NY

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro E. Gundel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gundel, P.E., Garibaldi, L.A., Helander, M. et al. Symbiotic interactions as drivers of trade-offs in plants: effects of fungal endophytes on tall fescue. Fungal Diversity 60, 5–14 (2013). https://doi.org/10.1007/s13225-013-0224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-013-0224-y

Keywords

Navigation