Skip to main content

Advertisement

Log in

Current trends in myxobacteria research

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Myxobacteria are fascinating Gram-negative bacteria whose life cycle includes the formation of multicellular fruiting bodies that contain about 100,000 cells differentiated as asexual spores for their long-term survival. They move by gliding on surfaces, an activity that helps them carry out their primitive kind of multicellular development. Myxobacteria have multiple traits that are clearly social in nature; they move and feed socially. These processes require specific intercellular signals, thereby exhibiting a sophisticated level of the inter-organismal communication. Myxobacteria are predators. Predation is social not only with respect to searching for prey (motility) but also in the killing of prey. Swarming groups of cells secrete antibiotics and bacteriolytic compounds that kill and lyse their prey, and food is thereby released. Since the last three decades, myxobacteria are known as valuable producers of secondary metabolites exhibiting various biological activities. Myxobacterial metabolites exhibit many unique structural features as well as rare or novel modes of action, making them attractive lead structures for drug development. Both genome sequencing and metabolic profiling of myxobacterial strains suggest that the diversity of myxobacterial secondary metabolism is far greater than previously appreciated. The present review discusses the structure, cytology, physiology, and ecology of myxobacteria, as well as their secondary metabolite production and social interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn JW, Jang KH, Chung SC, Oh KB, Shin J (2008) Sorangiadenosine, a new sesquiterpene adenoside from the myxobacterium Sorangium cellulosum. Org Lett 10:1167–1169

    Article  PubMed  CAS  Google Scholar 

  • Altendorfer M, Irschik H, Menche D (2012) Design, synthesis and biological evaluation of simplified side chains of the macrolide antibiotic etnangien. Bioorg Med Chem Lett 22:5731–5734

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Sieiro P, Martin MC, Redruello B, Rio B, Ladero V, Palanski BA, Khosla C, Fernandez M, Alvarez MA (2014) Generation of food-grade recombinant Lactobacillus casei delivering Myxococcus xanthus prolyl endopeptidase. Appl Microbiol Biotechnol 98(15):6689–6700

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barbier J, Jansen R, Irschik H, Benson S, Gerth K, Böhlendorf B, Höfle G, Reichenbach H, Wegner J, Zeilinger C, Kirschning A, Müller R (2012) Isolation and total synthesis of icumazoles and noricumazoles antifungal antibiotics and cation-channel blockers from Sorangium cellulosum. Angew Chem Int Ed 44(42):6828–6846

    Google Scholar 

  • Behmlander RM, Dworkin M (1994) Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J Bacteriology 176:6295–6303

    CAS  Google Scholar 

  • Berleman JE, Scott J, Chumley T, Kirby JR (2008) Predataxis behavior in Myxococcus xanthus. Proc Natl Acad Sci U S A 105:17127–17132

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Berleman JE, Vicente JJ, Davis AE, Jiang SY, Seo Y-E et al (2011) FrzS regulates social motility in Myxococcus xanthus by controlling exopolysaccharide production. PLoS ONE 6(8):e23920. doi:10.1371/journal.pone.0023920

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Beyer S, Kunze B, Silakowski B, Müller R (1999) Metabolic diversity in myxobacteria: identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So ce90. Biochim Biophys Acta 1445:185–195

    Article  PubMed  CAS  Google Scholar 

  • Bode HB, Müller R (2005) The impact of bacterial genomics on natural product research. Angew Chem Int Ed 44(42):6828–6846

    Article  CAS  Google Scholar 

  • Bode HB, Meiser P, Klefisch T, Socorro N, Cortina J, Krug D, Göhring A, Schwär G, Mahmud T, Elnakady YA, Müller R (2007) Mutasynthesis-derived myxalamids and origin of the isobutyryl-CoA starter unit of myxalamid. Chembiochem 8(17):2139–2144

    Article  PubMed  CAS  Google Scholar 

  • Brinkhoff T, Fischer D, Vollmers J, Voget S, Beardsley C, Thole S, Mussmannn M, Kunze B, Wagner-Dobler I, Daniel R, SImon M (2012) Biogeography and phylogenetic diversity of a cluster of exclusively marine myxobacteria. ISME J 6:1260–1272

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brzezińska AJ (2012) Myxobacteria as a factor bio-controlling of the trees roots. PhD Thesis, Nicolaus Copernicus University, Torun, Poland

  • Bui NK, Gray J, Schwarz H, Schumann P, Blanot D, Vollmer W (2009) The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced myxospore development. J Bacteriol 191(2):494–505

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Buntin K, Rachid S, Scharfe M, Blöcker H, Weissman KJ, Müller R (2008) Production of the antifungal isochromanone ajudazols A and B in Chondromyces crocatus Cm c5: biosynthetic machinery and cytochrome P450 modifications. Angew Chem Int Ed Engl 47:4595–4599

    Article  PubMed  CAS  Google Scholar 

  • Carvalho R, Reid R, Viswanathan N, Gramajo H, Julien B (2005) The biosynthetic genes for disorazoles, potent cytotoxic compounds that disrupt microtubule formation. Gene 359:91–98

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Keseler IM, Shimkets LJ (1990) Genome size of Myxococcus xanthus determined by pulsed-field gel electrophoresis. J Bacteriol 172:4206–4213

    PubMed Central  PubMed  CAS  Google Scholar 

  • Crespi BJ (2001) The evolution of social behavior in microorganisms. Trends Ecol Evol 16:178–183

    Article  PubMed  Google Scholar 

  • Curtis PD, Geyer R, White DC, Shimkets LJ (2006) Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ Microbiol 8:1935–1949

    Article  PubMed  CAS  Google Scholar 

  • Dahm H, Brzezińska AJ, Wrótniak-Drzewiecka W, Golińska P, Różycki H, Rai M (2015) Myxobacteria as a potential biocontrol agent for control of economically important pathogenic fungi of forest trees. Dendrobiology (in press)

  • Darnell CL, Wilson JM, Tiwari N, Fuentesc E, Kirby JR (2014) Chemosensory regulation of a HEAT-repeat protein couples aggregation and sporulation in Myxococcus xanthus. J Bacteriol 196(17):3160–3168

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dawid W (2000) Biology and global distribution of myxobacteria in soils. FEMS Microbiol Rev 24:403–427

    Article  PubMed  CAS  Google Scholar 

  • Dawid W, Galikowski CA, Hirsch P (1988) Psychrophilic myxobacteria from antarctic soils. Polarforschung 58:217–278

    Google Scholar 

  • Dejon L, Speicher A (2013) Synthesis of aurachin D and isoprenoid analogues from the myxobacterium Stigmatella aurantiaca. Tetrahedron Lett 54:6700–6702

    Article  CAS  Google Scholar 

  • Diez J, Martinez JP, Metres J, Sasse F, Frank R, Meyerhans A (2012) Myxobacteria: natural pharmaceutical factories. Microb Cell Fact 11:52

    Article  PubMed Central  PubMed  Google Scholar 

  • Ducret A, Valignat MP, Mouhamar F, Mignot T, Theodoly O (2012) Wet-surface-enhanced ellipsometric contrast microscopy identifies slime as a major adhesion factor during bacterial surface motility. Proc Natl Acad Sci U S A 109:10036–10041

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ducret A, Fleuchot B, Bergam P, Mignot T (2013) Direct live imaging of cell–cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. eLife 2:e00868. doi:10.7554/eLife.0086

    Article  PubMed Central  PubMed  Google Scholar 

  • Dworkin M (1972) Myxobacteria: new directions in studies of prokaryotic development. Crit Rev Microbiol 1:435–452

    Article  Google Scholar 

  • Dworkin M (1999) Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell–cell interactions in Myxococcus xanthus. BioEssays 21:590–595

    Article  PubMed  CAS  Google Scholar 

  • Evans K, Hobley L, Lambert C, Sockett RE (2008) Bdellovibrio: lone hunter cousin of the pack hunting myxobacteria. In: Whitworth DE (ed) Myxobacteria, multicellularity and differentiation. ASMPress, Washington, D.C, pp 351–362

    Google Scholar 

  • Felder S, Dreisigacker S, Kehraus S, Neu E, Bierbaum G, Wright PR, Menche D, Schaberle TF, Kçnig GM (2013) Salimabromide: unexpected chemistry from the obligate marine, myxobacterium Enhygromyxa salina. Chem Eur J 19:9319–9324

    Article  PubMed  CAS  Google Scholar 

  • Feng Z, Qi J, Tsuge T, Oba Y, Kobayashi T, Suzuki Y, Sakagami Y, Ojika M (2005) Construction of a bacterial artificial chromosome library for a myxobacterium of the genus Cystobacter and characterization of an antibiotic biosynthetic gene cluster. Biosci Biotechnol Biochem 69:1372–1380

    Article  PubMed  CAS  Google Scholar 

  • Fink JM, Zissler JF (1989) Characterization of lipopolysaccharide from Myxococcus xanthus by use of monoclonal antibodies. J Bacteriol 171:2028–2032

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fleta-Soriano E, Martinez JP, Hinkelmann B, Gerth K, Washausen P, Diez J, Frank R, Sasse F, Meyerhans A (2014) The myxobacterial metabolite ratjadone A inhibits HIV infection by blocking the Rev/CRM1-mediated nuclear export pathway. Microb Cell Fact 13:17. doi:10.1186/1475-2859-13-17

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Freese A, Reichenbach H, Lunsdorf H (1997) Further characterization and in situ localization of chain-like aggregates of the gliding bacteria Myxococcus fulvus and Myxococcus xanthus. J Bacteriol 179:1246–1252

    PubMed Central  PubMed  CAS  Google Scholar 

  • Garcia R, Gerth K, Stadler M, Dogma IJ, Müller R (2010) Expanded phylogeny of myxobacteria and evidence for cultivation of the unculturables. Molec Phylogen Evol 57:78–887

  • Garcia R, Pistorius D, Müller R (2011) Fatty acid-related phylogeny of myxobacteria as an approach to discover polyunsaturated omega-3/6 fatty acids. J Bacteriol 193(8):1930–1942

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gerth K, Müller R (2005) Moderately thermophilic myxobacteria: novel potential for the production of natural products isolation and characterization. Environ Microbiol 7:874–880

    Article  PubMed  CAS  Google Scholar 

  • Gerth K, Pradella S, Perlova O, Beyer S, Müller R (2003) Myxobacteria: proficient producers of novel natural products with various biological activities - past and future biotechnological aspects with the focus on the genus Sorangium. J Biotechnol 106:233–253

    Article  PubMed  CAS  Google Scholar 

  • Gill JS, Dworkin M (1986) Cell surface antigens during submerged development of Myxococcus xanthus examined with monoclonal antibodies. J Bacteriol 168:505–511

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gnosspelius G (1978) Myxobacterial slime and proteolytic activity. Arch Microbiol 116:51–59

    Article  PubMed  CAS  Google Scholar 

  • Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen JA, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB (2006) Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci U S A 103:15200–15205

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gong G, Wei X, Huang Y, Chen X (2014) Preparation and regeneration of protoplast from antitumor agent epothilone-producing microbes myxobacteria. J Chem Pharma Res 6(3):472–476

    Google Scholar 

  • Guerrero R, Esteve I, Pedrosalio C, Gaju N (1987) Predatory bacteria in procaryotic communities—the earliest trophic relationships. Ann NY Acad Sci 503:238–250

    Article  Google Scholar 

  • Guo WJ, Tao WY (2008) Phoxalone, a novel macrolide from Sorangium cellulosum: structure identification and its anti-tumor bioactivity in vitro. Biotechnol Lett 3:349–356

    Article  CAS  Google Scholar 

  • Harvey CW, Alber M, Tsimring LS, Aranson IS (2013) Continuum modeling of myxobacteria clustering. New J Phys 15:035029

    Article  PubMed Central  PubMed  Google Scholar 

  • Hou P, Li Y, Wu B, Yan Y, Yan B, Gao B (2006) Cellulolytic complex exist in cellulolytic myxobacterium Sorangium. Enzyme Microb Tech 38:273–278

    Article  CAS  Google Scholar 

  • Huang H, Menefee M, Edgerly M, Zhuang S, Kotz H, Poruchynsky M, Huff LM, Bates S, Fojo T (2010) A phase II clinical trial of ixabepilone (Ixempra; BMS-247550; NSC 710428), an epothilone B analog, in patients with metastatic renal cell carcinoma. Clin Cancer Res 16:1634–1641

    Article  PubMed  CAS  Google Scholar 

  • Huntley S, Zhang Y, Treuner-Lange A, Kneip S, Sensen CW, Søgaard-Andersen L (2012) Complete genome sequence of the fruiting myxobacterium Corallococcus coralloides DSM 2259. J Bacteriol 194(11):3012–3013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huntley S, Kneip S, Treuner-Lange A, Søgaard-Andersen L (2013) Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc 1(2):e00100–e00113. doi:10.1128/genomeA.00100-13

    Article  PubMed Central  Google Scholar 

  • Hutchings MI, Palmer T, Harrington DJ, Sutcliffe IC (2009) Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold’em, knowing when to fold’em. Trends Microbiol 17:13–21

    Article  PubMed  CAS  Google Scholar 

  • Iizuka T, Jojima Y, Fudou R, Yamanaka S (1998) Isolation of myxobacteria from the marine environment. FEMS Microbiol Lett 169:317–322

    Article  PubMed  CAS  Google Scholar 

  • Irschik H, Jansen R, Gerth K, Hofle G, Reichenbach H (1987) The sorangicins novel and powerful inhibitors of eubacterial RNA polymerase isolated from myxobacteria. J Antibiot (Tokyo) 40:7–13

    Article  CAS  Google Scholar 

  • Irschik H, Schummer D, Höfle G, Reichenbach H, Steinmetz H, Jansen R (2007) Etnangien, a macrolide-polyene antibiotic from Sorangium cellulosum that inhibits nucleic acid polymerase. J Nat Prod 70:1060–1063

    Article  PubMed  CAS  Google Scholar 

  • Irschik H, Washausen P, Sasse F, Fohrer J, Huch V, Muller R, Prusov EV (2013) Isolation, structure elucidation, and biological activity of maltepolides: Remarkable macrolides from myxobacteria. Angew Chem Int Ed 52:5402–5405

    Article  CAS  Google Scholar 

  • Jansen R, Irschik H, Reichenbach H, Höfle G (1997) Antibiotics from gliding bacteria, LXXXŁ Chivosayoles A-FŁ novel antifungal and cytotoxic macrolides from Sorangium cellulosum (Myxobacteria). Liebigs Ann 1725–1732

  • Jansen R, Irschik H, Huch V, Schummer D, Steinmetz H, Bock M, Schmidt T, Kirschning A, Müller R (2010) Carolacton—a macrolide ketocarbonic acid reducing biofilm formation by the caries- and endocarditis-associated bacterium Streptococcus mutans. Europ J Org Chem 7:1284–1289

    Article  CAS  Google Scholar 

  • Jiang DM, Wu ZH, Zhao JY, Li YZ (2007) Fruiting and non-fruiting myxobacteria: a phylogenetic perspective of cultured and uncultured members of this group. Mol Phylogenet Evol 44:545–552

    Article  PubMed  CAS  Google Scholar 

  • Jiang DM, Kato C, Zhou XW, Wu ZH, Sato T, Li YZ (2010) Phylogeographic separation of marine and soil myxobacteria at high levels of classification. ISME J 4:1520–1530

    Article  PubMed  Google Scholar 

  • Johnson TA, Sohn J, Vaske YM, White KN, Cohen TL, Vervoort HC, Tenney K, Valeriote FA, Bjeldanes LF, Drews P (2012) Myxobacteria versus sponge-derived alkaloids: the bengamide family identified as potent immune modulating agents by scrutiny of LC-MS/ELSD libraries. Bioorg Med Chem 20:4348–4355

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Julien B, Shah S, Ziermann R, Goldman R, Katz L, Khosla C (2000) Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. Gene 249:153–160

    Article  PubMed  CAS  Google Scholar 

  • Kaimer C, Berleman JE, Szuman DR (2012) Chemosensory signaling controls motility and subcellular polarity in Myxococcus xanthus. Curr Opin Microbiol 15:751–757

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaiser D (1998) How and why myxobacteria talk to each other. Curr Opin Microbiol 1:663–668

    Article  PubMed  CAS  Google Scholar 

  • Kaiser D (2004) Signaling in myxobacteria. Ann Rev Microbiol 58:75–98

    Article  CAS  Google Scholar 

  • Kaiser D (2013) Are myxobacteria intelligent? Frontiers in microbiology, evolutionary and genomic microbiology 4, Article 335. doi:10.3389/fmicb.2013.00335

  • Kaiser D (2015) Signaling in swarming and aggregating myxobacteria. In: Ruiz-Trillo I, Nedelcu AM, Ruiz-Trillo I, Nedelcu AM (eds) Evolutionary transitions to multicellular life: advances in marine genomics, vol. 2. Springer Science + Business Media, Dordrecht, pp 469–485

    Google Scholar 

  • Kaiser D, Robinson M, Kroos L (2010) Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2:a000380

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kearns DB, Bonner PJ, Smith DR, Shimkets LJ (2002) An extracellular matrix-associated zinc metalloprotease is required for dilauroyl phosphatidylethanolamine chemotactic excitation in Myxococcus xanthus. J Bacteriol 184:1678–1684

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kim J, Chung J, Cho K, Yi Y (2009) Isolation and characterization of myxobacteria with proteolytic activity. Kor J Microbiol Biotechnol 37(3):183–188

    CAS  Google Scholar 

  • Kim SJ, Lee YJ, Kim JB (2013) Myxobacterial metabolites enhance cell proliferation and reduce intracellular stress in cells from a Parkinson’s disease mouse model. Gene 514:36–40

    Article  PubMed  CAS  Google Scholar 

  • Kirby JR, Berleman JE, Muller S, Li D, Scott JC, Wilson JM (2008) Chemosensory signal transduction systems in Myxococcus xanthus. In: Whitworth DE (ed) Myxobacteria: multicellularity and differentiation. American Society for Microbiology, Washington, DC, pp 135–147

    Chapter  Google Scholar 

  • Konovalova A, Petters T, Sogaard-Andersen L (2010) Extracellular biology of Myxococcus xanthus. FEMS Microbiol Rev 34:89–106

    Article  PubMed  CAS  Google Scholar 

  • Kopp M, Irschik H, Gemperlein K, Buntin K, Meiser P, Weissman KJ, Bode HB, Müller R (2011) Insights into the complex biosynthesis of the leupyrrins in Sorangium cellulosum So ce690. Mol Biosyst 7(5):1549–1563

    Article  PubMed  CAS  Google Scholar 

  • Krell T, Busch A, Lacal J, Silva-Jiménez H, Ramos JL (2009) The enigma of cytosolic two-component systems: a hypothesis. Environ Microbiol Rep 1(3):171–176

    Article  PubMed  CAS  Google Scholar 

  • Kroos L (2007) The Bacillus and Myxococcus developmental networks and their transcriptional regulators. Annu Rev Genet 41:13–39

    Article  PubMed  CAS  Google Scholar 

  • Krug D, Zurek G, Revermann O, Vos M, Velicer GJ, Müller R (2008) Discovering the hidden secondary metabolome of Myxococcus xanthus: a study of intraspecific diversity. Appl Environ Microbiol 74(10):3058–3068

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kruse T, Lobedanz S, Berthelsen NMS, Søgaard-Andersen L (2001) C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus. Mol Microbiol 40:156–168

    Article  PubMed  CAS  Google Scholar 

  • Krzemieniewska H, Krzemieniowski S (1928) Morfologia komórki miksobakteryjnej. Acta Soc Bot Pol 6:46–90

    Google Scholar 

  • Kudryashev M, Cyrklaff M, Alex B, Lemgruber L, Baumeister W, Wallich R, Frischknecht F (2011) Evidence of direct cell–cell fusion in Borrelia by cryogenic electron tomography. Cell Microbiol 13:731–741

    Article  PubMed  CAS  Google Scholar 

  • Kulp A, Kuehn MJ (2010) Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 64:163–184

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lancero H, Brofft JE, Downard J, Birren BW, Nusbaum C, Taylor J, Shi W, Shimkets LJ (2002) Mapping of Myxococcus xanthus social motility dsp mutations to the dif genes. J Bacteriol 184:1462–1465

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Leonardy S, Bulyha I, Søgaard-Andersen L (2008) Reversing cells and oscillating proteins. Mol Biosyst 4:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Leontievskaya FA, Dobrovol’skaya TG (2014) Epiphytic bacterial complexes in grain crops: taxonomic composition and antagonistic properties. Eurasian Soil Sci 47(1):1033–1037

    Article  Google Scholar 

  • Li YZ, Hu W, Zhang YQ, Qiu ZJ, Zhang Y, Wu BH (2002) A simple method to isolate salt-tolerant myxobacteria from marine samples. J Microbiol Methods 50:205–209

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Sun H, Ma X, Lu A, Lux R, Zusman D, Shi W (2003) Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc Natl Acad Sci U S A 100:5443–5448

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Y, Weissman KJ, Müller R (2008) Myxochelin biosynthesis: direct evidence for two- and four-electron reduction of a carrier protein-bound thioester. J Am Chem Soc 130:7554–7555

    Article  PubMed  CAS  Google Scholar 

  • Li ZF, Li X, Liu H, Han K, Wu ZH, Hu W, Li FF, Li YZ (2011) Genome sequence of the halotolerant marine bacterium Myxoccocus fulvus HW-1. J Bacteriol 193:5015–5016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ligon J, Hill S, Beck J, Zirkle R, Molnar I, Zawodny J, Money S, Schupp T (2002) Characterization of the biosynthetic gene cluster for the antifungal polyketide soraphen A from Sorangium cellulosum So ce26. Gene 285:257–267

    Article  PubMed  CAS  Google Scholar 

  • Mashburn-Warren LM, Whiteley M (2006) Special delivery: vesicle trafficking in prokaryotes. Mol Microbiol 61:839–846

    Article  PubMed  CAS  Google Scholar 

  • Mauriello EMF, Mignot T, Yang Z, Zusman DR (2010) Gliding motility revisited: how do the myxobacteria move without flagella? Microbiol Mol Bio Rev 74(2):229–249

    Article  CAS  Google Scholar 

  • McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55:49–75

    Article  PubMed  CAS  Google Scholar 

  • McBride MJ, Zusman DR (1996) Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli. FEMS Microbiol Lett 137:227–231

    Article  PubMed  CAS  Google Scholar 

  • Merroun ML, Chekroun KB, Arias JM, Gonzales-Munoz MT (2003) Lanthanum fixation by Myxococcus xanthus: cellular location and extracellular polysaccharide observation. Chemosphere 52:113–120

    Article  PubMed  CAS  Google Scholar 

  • Michałowska M (2009) Prevalence and characteristics of the bacteria in a row Myxococcales isolated from selected Polish soil types. PhD thesis. Warsaw. WAU. Typescript pp. 434

  • Mogensen JE, Otzen DE (2005) Interactions between folding factors and bacterial outer membrane proteins. Mol Microbiol 57:326–346

    Article  PubMed  CAS  Google Scholar 

  • Moraleda-Muñoz A, Shimkets LJ (2007) Lipolytic enzymes in Myxococcus xanthus. J Bacteriol 189:3072–3080

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Morgan AD, MacLean RC, Hillesland KL, Velicer GJ (2010) Comparative analysis of Myxococcus predation on soil bacteria. Appl Environ Microbiol 76:6920–6927

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mori Y, Kimura Y (2014) Myxococcus xanthus low-molecular-weight protein tyrosine phosphatase homolog, ArsA, possesses arsenate reductase activity. J Biosci Bioeng 118(1):10–13

    Article  PubMed  CAS  Google Scholar 

  • Muller FD, Schink CW, Hoiczyk E, Cserti E, Higgs PI (2012) Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol Microbiol 83:486–505

    Article  PubMed  CAS  Google Scholar 

  • Muller S, Willet JW, Bahr SM, Darnell CL, Hummels KR, Dong CK, Vlamakis HC, Kirby JR (2013) Draft genome sequence of Myxococcus xanthus wild-type strain DZ2, a model organism for predation and development. Genome Announc 1(3):e00217–13. doi:10.1128/genomeA.00217-13

    PubMed Central  PubMed  Google Scholar 

  • Mulzer JH (2009) The epothilones—an outstanding family of anti-tumour agents: from soil to the clinic. Springer Verlag, Wien

    Google Scholar 

  • Nan B, Zusman DR (2011) Uncovering the mystery of gliding motility in the myxobacteria. Annu Rev Genet 45:21–39

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nan B, Chen J, Neu JC, Berry RM, Oster G, Zusman DR (2010) Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. PNAS 106(6):2498–2503

    Google Scholar 

  • Nan B, McBride MJ, Chen J, Zusman DR, Oster G (2014) Bacteria that glide with helical tracks. Curr Biol 24(4):R169–R173

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Newsome L, Morris K, Lloyd JR (2014) The biogeochemistry and remediation of uranium and other priority radionuclides. Chem Geol 363:164–184

    Article  CAS  Google Scholar 

  • O’Connor KA, Zusman DR (1989) Patterns of cellular interactions during fruiting-body formation in Myxococcus xanthus. J Bacteriol 17(1):6013–6024

    Google Scholar 

  • O’Neill A, Oliva B, Storey C, Hoyle A, Fishwick C, Chopra I (2000) RNA polymerase inhibitors with activity against rifampin - resistant mutants of Staphylococcus aureus. Antimicrob Agents Chemother 44:3163–3166

    Article  PubMed Central  PubMed  Google Scholar 

  • Pathak DT, Wall D (2012) Identification of the cglC, cglD, cglE, and cglF genes and their role in cell contact-dependent gliding motility in Myxococcus xanthus. J Bacteriol 194(8):1940–1949

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pathak DT, Wei X, Wall D (2012a) Myxobacterial tools for social interactions. Res Microbiol 163:579–591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pathak DT, Wei X, Bucuvalas A, Haft DH, Gerloff DL, Wall D (2012b) Cell contact-dependent outer membrane exchange in myxobacteria: genetic determinants and mechanism. PLoS Genet 8:e1002626

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Perez J, Castaneda-Garcıa A, Jenke-Kodama H, Mullers R, Munoz-Dorado J (2008) Eukaryotic-like protein kinases in the prokaryotes and the myxobacterial kinome. Proc Natl Acad Sci U S A 105(41):15950–15955

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Perlova O, Gerth K, Hans A, Kaiser O, Müller R (2006) Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum Soce56. J Biotechnol 121:174–191

    Article  PubMed  CAS  Google Scholar 

  • Plaga W, Stamm I, Schairer HU (1998) Intercellular signaling in Stigmatella aurantiaca: purification and characterization of stigmolone, a myxobacterial pheromone. Proc Natl Acad Sci U S A 95(19):11263–11267

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Plaza A, Müller R (2014) Myxobacteria: chemical diversity and screening strategies. In Goss R, Carter G, Osbourne A. (eds.), Natural products: Discourse, diversity and design. Wiley-Blackwell, doi:10.1002/9781118794623.ch6

  • Plaza A, Garcia R, Bifulco G, Martinez JP, Hüttel S, Sasse F, Meyerhans A, Stadler M, Müller R (2012) Aetheramides A and B, potent HIV-inhibitory dep-sipeptides from a myxobacterium of the new genus “Aetherobacter”. Org Lett 14:2854–2857

    Article  PubMed  CAS  Google Scholar 

  • Powell JT, Chatziefhimiou AD, Banack SA, Cox PA, Metcalf JS (2015) Desert crust microorganisms, their environment and human health. J Arid Environ 112(Part B):127–133

    Article  Google Scholar 

  • Pradella S, Hans A, Spröer H, Reichenbach H, Gerth K, Beyer S (2002) Characterization, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum Soce 56. Arch Microbiol 178:484–492

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach H, Höfle G (1993) Biologically active secondary metabolites from myxobacteria. Biotechnol Adv 11(2):219–277

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach H, Dworkin M (1992) The myxobacteria. In: Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd edn. Spriger-Verlag, Berlin, pp 3418–3487

    Google Scholar 

  • Reinchenbach H (1999) The ecology of the myxobacteria. Environ Microbiol 1:15–21

    Article  Google Scholar 

  • Reinchenbach H (2001) Myxobacteria, producers of novel bioactive substances. J Ind Microbiol Biotechnol 27:149–156

    Article  CAS  Google Scholar 

  • Ronning CM, Nierman W (2008) The genomes of Myxococcus xanthus and Stigmatella aurantiaca. In: Whitworth D (ed) Myxobacteria. multicellularity and differentiation. Am Soc Microbiol, Washington DC, pp 17–41

    Google Scholar 

  • Rosenberg E, Varon M (1984) Antibiotics and lytic enzymes. In: Rosenberg E (ed) Myxobacteria: development and cell interactions. Springer, New York, pp 109–125

    Chapter  Google Scholar 

  • Rosenbluh A, Eisenbach M (1992) Effect of mechanical removal of pili on gliding motility of Myxococcus xanthus. J Bacteriol 174:5406–5413

    PubMed Central  PubMed  CAS  Google Scholar 

  • Sandmann A, Sasse F, Muüller R (2004) Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. Chem Biol 11:1071–1079

    Article  PubMed  CAS  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promotingrhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29

    Article  PubMed  CAS  Google Scholar 

  • Sasaki M, Takegawa K, Kimura Y (2014) Enzymatic characteristics of an Apah-like phosphatase, PrpA, and a diadenosine tetraphosphate hydrolase, ApaH, from Myxococcus xanthus. FEBS Lett 588(18):3395–3402

    Article  PubMed  CAS  Google Scholar 

  • Sasse F, Steinmetz H, Heil J, Höfle G, Reichenbach H (2000) Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J Antibiot 53:879–885

    Article  PubMed  CAS  Google Scholar 

  • Schäberle TF, Schiefer A, Schmitz A, König GM, Hoerauf A, Pfarr K (2014) Corallopyronin A: a promising antibiotic for treatment of filariasis. Int J Med Microbiol 304:72–78

    Article  PubMed  CAS  Google Scholar 

  • Schierholz JM, Beuth J (2001) Implant infections: a haven for opportunistic bacteria. J Hosp Infect 49:87–93

    Article  PubMed  CAS  Google Scholar 

  • Schlicker C, Mogk A, Bukan B (2004) A PDZ switch for a cellular stress response. Cell 117:417–419

    Article  Google Scholar 

  • Schmitz A, Felder S, Höver T, Kehraus S, Neu E, Lohr F, König GM, Schäberle TF (2013) Antibiotics from gliding bacteria. Phytochem Rev 12:507–516

    Article  CAS  Google Scholar 

  • Shimkets LJ (1990) Social and developmental biology of the myxobacteria. Microbiol Rev 54:473–501

    PubMed Central  PubMed  CAS  Google Scholar 

  • Shimkets LJ (1999) Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu Rev Microbiol 53:525–549

    Article  PubMed  CAS  Google Scholar 

  • Silakowski B, Nordsiek G, Kunze B, Blöcker H, Müller R (2001) Novel features in a combined polyketide synthase/nonribosomal peptide synthetase: the myxalamid biosynthetic gene cluster of the myxobacterium Stigmatella aurantiaca Sga15. Chem Biol 8:59–69

    Article  PubMed  CAS  Google Scholar 

  • Simunowic VJ, Yapp S, Rachid S, Krug P, Meiser P, Müller R (2006) Myxovirescin biosynthesis is directed by an intriguing megasynthetase consisting of hybrid polyketide synthases /nonribosomal peptide synthetase, 3-hydroxy-3-methylglutaryl CoA synthases and trans-acting acyltransferases. Chembiochem 7:1206–1220

    Article  CAS  Google Scholar 

  • Singer M, Kaiser D (1995) Ectopic production of guanosine penta- and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Gene Dev 9:1633–1644

    Article  PubMed  CAS  Google Scholar 

  • Skerker JM, Berg HC (2001) Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98:6901–6904

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Spormann AM (1999) Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev 63:621–641

    PubMed Central  PubMed  CAS  Google Scholar 

  • Steinmetz H, Gerth K, Jansen R, Schläger N, Dehn R, Reinecke S, Kirschning A, Müller R (2011) Elansolid A, a unique macrolide antibiotic from Chitinophaga sancti isolated as two stable atropisomers. Angew Chem Int Ed Engl 50(2):532–536

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz H, Zander W, Shushni MA, Jansen R, Gerth K, Dehn R, Dräger G, Kirschning A, Müller R (2012) Precursor-directed syntheses and biological evaluation of new elansolid derivatives. Chembiochem 13(12):1813–1817

    Article  PubMed  CAS  Google Scholar 

  • Stevens DC, Young J, Carmichael R, Tan J, Taylor RE (2014) Draft genome sequence of gephyronic acid producer Cystobacter violaceus strain Cb vi 76. Genome Announc 2(6):e01299–14. doi:10.1128/genomeA.01299-14

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun M, Wartel M, Cascales E, Shaevitz JW, Mignot T (2011) Motordriven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci U S A 108:7559–7564

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Velicer GJ, Hillesland KL (2008) Why cooperate? the ecology and evolution of myxobacteria. In: Whitworth D (ed) Myxobacteria. multicellularity and differentiation. Am Soc Microbiol, Washington, DC, pp 17–41

    Google Scholar 

  • Velicer GJ, Stredwick KL (2002) Experimental social evolution with Myxococcus xanthus. A van Leeuw J Microbiol 81:155–164

    Article  Google Scholar 

  • Villaverde A (2010) Nanotechnology, bionanotechnology and microbial cell factories. Microb Cell Fact 9:53

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vlamakis HC, Kirby JR, Zusman DR (2004) The Che 4 pathway of Myxococcus xanthus regulates type IV pilus- mediated motility. Mol Microbiol 52:1799–1811

    Article  PubMed  CAS  Google Scholar 

  • Volz C, Kegler C, Müller R (2012) Enhancer binding proteins act as hetero-oligomers and link secondary metabolite production to myxococcal development, motility and predation. Chem Biol 19:1447–1459

    Article  PubMed  CAS  Google Scholar 

  • Wall D (2014a) Molecular recognition in myxobacterial outer membrane exchange: functional, social and evolutionary implications. Mol Microbiol 91:209–220

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wall D (2014b) Social interactions mediated by outer membrane exchange. In: Yang Z, Higgs PI (eds) Myxobacteria: genomics, cellular and molecular biology. Caister Academic Press, UK

    Google Scholar 

  • Wall D, Kolenbrander PE, Kaiser D (1999) The Myxococcus xanthus pilQ (sglA) gene encodes a secretin homolog required for type IV pilus biogenesis, social motility and development. J Bacteriol 181:24–33

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wei X, Vassallo CN, Pathak DT, Wall D (2014) Myxobacteria produce outer membrane-enclosed tubes in unstructured environments. J Bacteriol 196(10):1807–1814

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weissman KJ, Müller R (2009) A brief tour of myxobacterial secondary metabolism. Bioorgan Med Chem 17:2121–2136

    Article  CAS  Google Scholar 

  • Weissman KJ, Müller R (2010) Myxobacterial secondary metabolites: bioactivities and modes of action. Nat Prod Rep 27:1276–1295

    Article  PubMed  CAS  Google Scholar 

  • Wenzel SC, Müller R (2007) For a recent review on the biosynthesis of myxobacterial metabolites. Nat Prod Rep 24:1211

    Article  PubMed  CAS  Google Scholar 

  • White D, Dworkin M, Tipper DJ (1968) Peptidoglycan of Myxococcus xanthus: structure and relation to morphogenesis. J Bacteriol 95:2186–2197

    PubMed Central  PubMed  CAS  Google Scholar 

  • Whitworth DE, Cock PJA (2007) Myxobacterial two-component systems. In: Whitworth DE (ed) Myxobacteria: multicellularity and differentiation. Am Soc Microbiol, Washington, DC, pp 169–189

    Google Scholar 

  • Whitworth DE, Cock PJA (2008) Two-component systems of the myxobacteria: structure, diversity and evolutionary relationships. Microbiology 150:360–372

    Article  CAS  Google Scholar 

  • Wiseman JW, Dworkin M (1977) Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 129:796–802

    Google Scholar 

  • Wrótniak-Drzewiecka W, Laskowski D, Rai M (2013) Microbial synthesis of silver nanoparticles. W: Proceedings of XIV Conference DIAGMOL 2013 Molecular biology in diagnostics of infectious diseases and biotechnology”, 291 October 2013, WULS-SGGW in Warsaw, Poland

  • Wrótniak-Drzewiecka W, Gaikwad S, Laskowski D, Dahm H, Niedojadało J, Gade A, Rai M (2014) Novel approach towards synthesis of silver nanoparticles from Myxococcus virescens and their lethality on pathogenic bacterial cells. Austin J Biotechnol Bioeng 1(1): id1004: 01–07

  • Wu SS, Kaiser D (1995) Genetic and functional evidence that type — IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 18:547–558

  • Wu Y, Jiang Y, Kaiser D, Alber M (2007) Social interactions in myxobacterial swarming. PLoS Comput Biol 3(12):253. doi:10.1371/journal.pcbi.0030253

    Article  CAS  Google Scholar 

  • Xiao Y, Wei X, Richard E, Wall D (2011) Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 193:4626–4633

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang C, Kaplan HB (1997) Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J Bacteriol 179:7759–7767

    PubMed Central  PubMed  CAS  Google Scholar 

  • Yang Z, Duan X, Esmaeiliyan M, Kaplan H (2008) Composition, structure and function of the Myxococcus xanthus cell envelope. In: Whitworth DE (ed) Myxobacteria. multicellularity and differentiation. Am Soc Microbiol, Washington DC, pp 17–41

    Google Scholar 

  • Yu R, Kaiser D (2007) Gliding motility and polarized slime secretion. Mol Microbiol 63:454–467

    Article  PubMed  CAS  Google Scholar 

  • Yu YT, Yuan X, Velicer GJ (2010) Adaptive evolution of an sRNA that controls Myxococcus development. Science 328(5981):993. doi:10.1126/science.1187200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zafriri D, Rosenberg E, Mirelman D (1981) Mode of action of Myxococcus xanthus antibiotic TA. Antimicrob Agents Chemother 19:349–351

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zagriadskaia Yu A, Lysak LV, Sidorova II, Aleksandrova AV, Voronina E (2014) Bacterial complexes of the fruiting bodies and hyphosphere of certain basidiomycetes. Biology Bull 41(1):12–18

    Article  Google Scholar 

  • Zander W, Gerth K, Mohr K, Kessler W, Jansen R, Müller R (2011) Roimatacene: an antibiotic against gram-negative bacteria isolated from Cystobacter ferrugineus Cb G35 (myxobacteria). Chemistry 17:7875–7881

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Li S, Li W, Jiang D, Han K, Wu Z, Li Y (2014a) Myxobacterial community is a predominant and highly diverse bacterial group in soil niches. Environ Microbiol Rep 6(1):45–56

    Article  PubMed  CAS  Google Scholar 

  • Zhou Z, Qiao W, Xing C, Shen X, Hu D, Wang L (2014b) A micro-aerobic hydrolysis process for sludge in situ reduction: performance and microbial community structure. Bioresource Technol 173:452–456

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Grant from the Polish Ministry of Science and Higher Education (Grant No. 2 PO4 C 040 29). Dr Mahendra Rai is thankful to Nicolaus Copernicus University (Torun, Poland) for fellowships to Visiting Professors within the project “Enhancing Educational Potential of Nicolaus Copernicus University in the Disciplines of Mathematical and Natural Sciences” conducted under Sub-measure 4.1.1 Human Capital Operational Programme – Task 7 (Project No.POKL.04.01.01-00-081/10)”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wioletta Wrótniak-Drzewiecka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrótniak-Drzewiecka, W., Brzezińska, A.J., Dahm, H. et al. Current trends in myxobacteria research. Ann Microbiol 66, 17–33 (2016). https://doi.org/10.1007/s13213-015-1104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-015-1104-3

Keywords

Navigation