Skip to main content
Log in

Characterization, modification, and overexpression of 3-phosphoglycerate dehydrogenase in Corynebacterium glutamicum for enhancing l-serine production

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The direct fermentative production of l-serine from renewable biomass using Corynebacterium glutamicum is attracting increasing attention. In this study, wild-type C. glutamicum SYPS-062 produced up to 6.65 ± 0.23 g/L l-serine; to further improve l-serine production, the serA gene was cloned, and the C-terminal domain of 3-phosphoglycerate dehydrogenase (PGDH) from this strain was truncated. When expressed in Escherichia coli, the resultant mutein SerAΔ197 showed a specific PGDH activity of 1.092 ± 0.05 U/mg protein, representing a decrease of 25.87 % from that encoded by serA, and was no longer sensitive to high concentrations of l-serine. When serA Δ591 was overexpressed in C. glutamicum SYPS-062, the activity of PGDH in C. glutamicum pJC1-tac-serA Δ591 increased by 47.72 %, and the resultant strain C. glutamicum pJC1-tac-serA Δ591 could accumulate 7.69 ± 0.22 g/L l-serine. Furthermore, when serA Δ591 was overexpressed in C. glutamicum SYPS-062ΔsdaA, the resultant strain could accumulate 8.84 ± 0.23 g/L l-serine at 102 h, and the yield of l-serine on cells (Y p/x) improved by 60 % when compared with that noted in the control. These results demonstrate that l-serine production in C. glutamicum SYPS-062 could be improved by overexpressing a C-terminal truncation of PGDH in combination with other genetic modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a,b
Fig. 2a,b
Fig. 3a–d

Similar content being viewed by others

References

  • Eggeling L, Bott M (eds) (2005) Handbook of Corynebacterium glutamicum. CRC, Boca Raton

  • Eggeling L, Sahm H (1999) l-Glutamate and l-lysine: traditional products with impetuous developments. Appl Microbiol Biotechnol 52:146–153

    Article  CAS  Google Scholar 

  • Ema M, Kakimoto T, Chibata I (1979) Production of l-serine by Sarcina albida. Appl Environ Microbiol 37:1053–1058

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grant GA (1989) A new family of 2-hydroxyacid dehydrogenases. Biochem Biophys Res Commun 165:1371–1374

    Article  CAS  PubMed  Google Scholar 

  • Grant GA, Schuller DJ, Banaszak LJ (1996) A model for the regulation of d-3-phosphoglycerate dehydrogenase, a Vmax-type allosteric enzyme. Protein Sci 5:34–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hagishita T, Yoshida T, Izumi Y, Mitsunaga T (1996) Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp. strain MN43. Biosci Biotechnol Biochem 60:1604–1607

    Article  CAS  PubMed  Google Scholar 

  • Ho CL, Noji M, Saito M, Saito K (1999) Regulation of serine biosynthesis in Arabidopsis. Crucial role of plastidic 3-phosphoglycerate dehydrogenase in non-photosynthetic tissues. J Biol Chem 274:397–402

    Article  CAS  PubMed  Google Scholar 

  • Hsiao HY, Wei T (1986) Enzymatic production of l-serine with a feedback control system for formaldehyde addition. Biotechnol Bioeng 28:1510–1518

    Article  CAS  PubMed  Google Scholar 

  • Izumi Y, Yoshida T, Miyazaki SS, Mitsunaga T, Ohshiro T, Shimao M, Miyata A, Tanabe T (1993) l-Serine production by a methylotroph and its related enzymes. Appl Microbiol Biotechnol 39:427–432

    Article  CAS  PubMed  Google Scholar 

  • Lai SJ, Zhang Y, Liu SW, Liang Y, Shang XL, Chai X, Wen TY (2012) Metabolic engineering and flux analysis of Corynebacterium glutamicum for l-serine production. Sci China Life Sci 55:283–290

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Chen GK, Tong XW, Zhang HT, Liu XG, Liu YH, Lu FP (2012) Construction of Escherichia coli strains producing l-serine from glucose. Biotechnol Lett 34:1525–1530

    Article  CAS  PubMed  Google Scholar 

  • Marx A, de Graaf AA, Wiechert W, Eggeling L, Sahm H (1996) Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng 49:111–129

    Article  CAS  PubMed  Google Scholar 

  • Netzer R, Peters-Wendisch P, Eggeling L, Sahm H (2004) Cometabolism of a nongrowth substrate: l-serine utilization by Corynebacterium glutamicum. Appl Environ Microb 70:7148–7155

    Article  CAS  Google Scholar 

  • Omori K, Kakimoto T, Chibata I (1983) l-Serine production by a mutant of Sarcina albida defective in l-serine degradation. Appl Environ Microbiol 45:1722–1726

    PubMed Central  CAS  PubMed  Google Scholar 

  • Peters-Wendisch P, Netzer R, Eggeling L, Sahm H (2002) 3-phosphoglycerate dehydrogenase from Corynebacterium glutamicum: the C-terminal domain is not essential for activity but is required for inhibition by l-serine. Appl Microbiol Biotechnol 60:437–441

    Article  CAS  PubMed  Google Scholar 

  • Peters-Wendisch P, Stolz M, Etterich H, Kennerknecht N, Sahm H, Eggeling L (2005) Metabolic engineering of Corynebacterium glutamicum for l-serine production. Appl Environ Microbiol 71:7139–7144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saski R, Pizer LI (1975) Regulatory properties of purified 3-phosphoglycerate dehydrogenase from Bacillus subtilis. Eur J Biochem 51:415–427

    Article  CAS  PubMed  Google Scholar 

  • Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794

    Article  CAS  PubMed  Google Scholar 

  • Schuller DJ, Grant GA, Banaszak LJ (1995) The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Nat Struct Biol 2:69–76

    Article  CAS  PubMed  Google Scholar 

  • Schweitzer JE, Stolz M, Diesveld R, Etterich H, Eggeling L (2009) The serine hydroxymethyltransferase gene glyA in Corynebacterium glutamicum is controlled by GlyR. J Biotechnol 139:214–221

  • Stauffer GV (1996) Biosynthesis of serine, glycine, and one-carbon units, 2nd edn. ASM, Washington, DC

    Google Scholar 

  • Vallino JJ, Stephanopoulos G (1994) Carbon flux distributions at the pyruvate branch point in Corynebacterium glutamicum during lysine overproduction. Biotechnol Prog 10:320–326

    Article  CAS  Google Scholar 

  • Zhang X, Dou W, Xu H, Xu Z (2010) Metabolic flux analysis of l-serine synthesis by Corynebacterium glutamicum SYPS-062. Chinese J Biotechol 26:1363–1371

    CAS  Google Scholar 

  • Zhao G, Winkler ME (1996) A novel alpha-ketoglutarate reductase activity of the serA-encoded 3-phosphoglycerate dehydrogenase of Escherichia coli K-12 and its possible implications for human 2-hydroxyglutaric aciduria. J Bacteriol 178:232–239

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the High Tech Development Program of China (863 Project, No. 2012AA022102) and the production project of Ministry of Education of Guangdong province (No.2012B091000083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaomei Zhang or Zhenghong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Jin, X., Guo, W. et al. Characterization, modification, and overexpression of 3-phosphoglycerate dehydrogenase in Corynebacterium glutamicum for enhancing l-serine production. Ann Microbiol 65, 929–935 (2015). https://doi.org/10.1007/s13213-014-0936-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-014-0936-6

Keywords

Navigation