Skip to main content
Log in

Butanol production from glycerol by recombinant Escherichia coli

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Escherichia coli MG1655 (DE3) with the ability to synthesize butanol from glycerol was constructed by metabolic engineering. The genes thil, adhe2, bcs operon (crt, bcd, etfB, etfA, and hbd) were cloned into the plasmid vectors, pETDuet-1 and pACYCDuet-1, then the two resulting plasmids, pACYC-thl-bcs and pET-adhe2, were transferred to E. coli, and the recombinant strain was able to synthesize up to 18.5 mg/L butanol on a glycerol-containing medium. After the glycerol transport protein gene GlpF was expressed, the butanol production was improved to 22.7 mg/L. The competing pathway of byproducts, such as ethanol, succinate, and lactate, was subsequently deleted to improve the 1-butanol production to 97.9 mg/L. Moreover, a NADH regeneration system was introduced into the E. coli, and finally a 154.0 mg/L butanol titer was achieved in a laboratory-scale shake-flask experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJ, Hanai T, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  CAS  PubMed  Google Scholar 

  • Berezina O, Zakharova N, Brandt A, Yarotsky S, Schwarz W, Zverlov V (2010) Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 87:635–646

    Article  CAS  PubMed  Google Scholar 

  • Berríos-Rivera SJ, Bennett GN, San KY (2002) Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab Eng 4:217–229

    PubMed  Google Scholar 

  • Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. J Ind Microbiol Biotechnol 27:18–26

    CAS  PubMed  Google Scholar 

  • Bond-Watts BB, Bellerose RJ, Michelle C, Chang Y (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuels pathways. Nat Chem Biol 7:222–227

    CAS  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    CAS  PubMed  Google Scholar 

  • de Graef MR, Alexeeva S, Snoep JL, de Mattos MJT (1999) The steady-state internal redox state (NADH/NAD+) reflects the external redox state and is correlated with catabolic adaptation in Escherichia coli. J Bacteriol 181:2351–2357

    PubMed Central  PubMed  Google Scholar 

  • Gonzalez R, Murarka A, Dharmadi Y, Yazdani SS (2008) A new model for the anaerobic fermentation of glycerol in enteric bacteria: trunk and auxiliary pathways in Escherichia coli. Metab Eng 10:234–245

    CAS  PubMed  Google Scholar 

  • Gonzalez R, Blankschien M, Clomburg J (2010) Metabolic engineering of Escherichia coli for the production of succinate from glycerol. Metab Eng 12:409–419

    PubMed  Google Scholar 

  • Harris LM, Desai RP, Welker NE, Papoutsaki ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition. Biotechnol Bioeng 67:1–11

    CAS  PubMed  Google Scholar 

  • Herrmann G, Jayamani E, Mai G, Buckel W (2008) Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. J Bacteriol 190:784–791

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ingram SW, Stratemann SA, Barnes LD (1999) Schizosaccharomyces pombe Aps1, a diadenosine 5′, 5′ ″-P1, P6-hexaphosphate hydrolase that is a member of the Nudix (MutT) family of hydrolases: cloning of the gene and characterization of the purified enzyme. Biochemistry 38:3649–3655

    CAS  PubMed  Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    CAS  PubMed  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klaus B, Heller ECC, Lin T, Wilson H (1980) Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli. J Bacteriol 144:274–278

    Google Scholar 

  • Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and crotonyl Coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen DR, Leonard E, Yoon S-H, Tseng H-C, Yuan C, Prather KLJ (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273

    CAS  PubMed  Google Scholar 

  • Sanchez AM, Bennett GN, San KY (2005) Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. J Biotechnol 117:395–405

    CAS  PubMed  Google Scholar 

  • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915

    CAS  PubMed Central  PubMed  Google Scholar 

  • Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36

    PubMed Central  PubMed  Google Scholar 

  • Taconi KA, Venkataramanan KP, Johnson DT (2009) Growth and solvent production by Clostridium pasteurianum ATCC 6013™ utilizing biodiesel-derived crude glycerol as the sole carbon source. AIChE Environ Prog Sustain Energ 28(1):100–110

    CAS  Google Scholar 

  • Yazdani SS, Gonzalez R (2008) Engineering Escherichia coli for the efficient conversion of glycerol to ethanol and co-products. Metab Eng 10(6):340–351

    CAS  Google Scholar 

  • Zhang H, Gao A, Li F, Zhang G, Ho HI, Liao W (2009) Mechanism of action of tetrandrine, a natural inhibitor of Candida albicans drug efflux pumps. Yakugaku Zasshi 129:623–630

    Google Scholar 

Download references

Acknowledgment

This work was supported by Open Funding Project of the State Key Laboratory of Bioreactor Engineering, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingli Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, P., Zhang, Y., Wang, P. et al. Butanol production from glycerol by recombinant Escherichia coli . Ann Microbiol 64, 219–227 (2014). https://doi.org/10.1007/s13213-013-0654-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-013-0654-5

Keywords

Navigation