Skip to main content
Log in

Production of succinic acid and lactic acid by Corynebacterium crenatum under anaerobic conditions

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

A new succinic acid and lactic acid production bioprocess by Corynebacterium crenatum was investigated in mineral medium under anaerobic conditions. Corynebacterium crenatum cells with sustained acid production ability and high acid volumetric productivity harvested from the glutamic acid fermentation broth were used to produce succinic acid and lactic acid. Compared with the first cycle, succinic acid production in the third cycle increased 120% and reached 43.4 g/L in 10 h during cell-recycling repeated fermentations. The volumetric productivities of succinic acid and lactic acid could maintain above 4.2 g/(L·h) and 3.1 g/(L·h), respectively, for at least 100 h. Moreover, wheat bran hydrolysates could be used for succinic acid and lactic acid production by the recycled C. crenatum cells. The final succinic acid concentration reached 43.6 g/L with a volumetric productivity of 4.36 g/(L·h); at the same time, 32 g/L lactic acid was produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bormann E, Eikmanns B, Sahm H (1992) Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase. Mol Microbiol 6:317–326

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bunch PK, Mat-Jan F, Lee N, Clark DP (1997) The IdhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli. Microbiology 143:187

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Ding J, Duan ZY, Liu LM, Shi ZP (2009) On-line glucose concentration prediction and control for improving glutamate fermentation performance. Microbiology 36:1619–1624

    Google Scholar 

  • Danshina P, Schmalhausen E, Avetisyan A, Muronetz V (2001) Mildly oxidized glyceraldehyde-3-phosphate dehydrogenase as a possible regulator of glycolysis. IUBMB Life 51:309–314

    Article  PubMed  CAS  Google Scholar 

  • Dominguez H, Nezondet C, Lindley N, Cocaign M (1993) Modified carbon flux during oxygen limited growth of Corynebacterium glutamicum and the consequences for amino acid overproduction. Biotechnol Lett 15:449–454

    Article  CAS  Google Scholar 

  • Guettler MV, Jain MK, Rumler D (1996) US Patent Patent No. 5,573,931

  • John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Han L, Ji Y, Wang X, Tan T (2010) Fermentative production of l-lactic acid from hydrolysate of wheat bran by Lactobacillus rhamnosus. Biochem Eng J 49:138–142

    Article  CAS  Google Scholar 

  • Litchfield JH (1996) Microbiological production of lactic acid. Adv Appl Microbiol 42:45–95

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Eiteman MA, Altman E (2009) Effect of CO2 on succinate production in dual-phase Escherichia coli fermentations. J Biotechnol 143:213–223

    Article  PubMed  CAS  Google Scholar 

  • McKinlay JB, Vieille C (2008) 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. Metab Eng 10:55–68

    Article  PubMed  CAS  Google Scholar 

  • Meynial-Salles I, Dorotyn S, Soucaille P (2008) A new process for the continuous production of succinic acid from glucose at high yield, titer, and productivity. Biotechnol Bioeng 99:129–135

    Article  PubMed  CAS  Google Scholar 

  • Nigam J (2001) Ethanol production from wheat straw hemicellulose hydrolysate by Pichia stipitis. J Biotechnol 87:17–27

    Article  PubMed  CAS  Google Scholar 

  • Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:475–481

    Article  PubMed  CAS  Google Scholar 

  • Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  PubMed  CAS  Google Scholar 

  • Sauer M, Porro D, Mattanovich D, Branduardi P (2008) Microbial production of organic acids: expanding the markets. Trends Biotechnol 26:100–108

    Article  PubMed  CAS  Google Scholar 

  • Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzym Microb Technol 39:352–361

    Article  CAS  Google Scholar 

  • Vemuri G, Eiteman M, Altman E (2002) Succinate production in dual-phase Escherichia coli fermentations depends on the time of transition from aerobic to anaerobic conditions. J Ind Microbiol Biotechnol 28:325–332

    Article  PubMed  CAS  Google Scholar 

  • Wang JY, Zhu SG, Xu CF (2002) Biochemistry. Higher Education Press, Beijing, pp 100–102

    Google Scholar 

  • Wu H, Li Z, Zhou L, Ye Q (2007) Improved succinic acid production in the anaerobic culture of an Escherichia coli pflB ldhA double mutant as a result of enhanced anaplerotic activities in the preceding aerobic culture. Appl Environ Microbiol 73:7837–7843

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Dou WF, Xu HY, Zhang XM, Rao ZM et al (2009) A two-stage oxygen supply strategy for enhanced l-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis. Biochem Eng J 43:41–51

    Article  CAS  Google Scholar 

  • Zeikus J, Jain M, Elankovan P (1999) Biotechnology of succinic acid production and markets for derived industrial products. Appl Microbiol Biotechnol 51:545–552

    Article  CAS  Google Scholar 

  • Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35:251–263

    Article  CAS  Google Scholar 

  • Zheng P, Dong JJ, Sun ZH, Ni Y, Fang L (2009) Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresour Technol 100:2425–2429

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Causey T, Hasona A, Shanmugam K, Ingram L (2003) Production of optically pure d-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110. Appl Environ Microbiol 69:399

    Article  PubMed  CAS  Google Scholar 

  • Zwicker N, Theobald U, Zahner H, Fiedler H (1997) Optimization of fermentation conditions for the production of ethylene-diamine-disuccinic acid by Amycolatopsis orientalis. J Ind Microbiol Biotechnol 19:280–285

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (No. 31071636/31101352) and Program of the Key Laboratory for Agriculture Products Processing of Anhui Province (2009AKSY0102) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaotong Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Jiang, S., Li, X. et al. Production of succinic acid and lactic acid by Corynebacterium crenatum under anaerobic conditions. Ann Microbiol 63, 39–44 (2013). https://doi.org/10.1007/s13213-012-0441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-012-0441-8

Keywords

Navigation