Skip to main content
Log in

Screening of glucosinolate-degrading strains and its application in improving the quality of rapeseed meal

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Two myrosinase-producing fungi, Lichtheimia sp. JN3C and Aspergillus terreus, were newly isolated from decayed rapeseed meal samples obtained in Anhui Province, China. After preliminary screening, re-screening and combination of two screened strains with a yeast, an optimal composite strain to ferment rapeseed meal was obtained. Results demonstrated that the glucosinolate content of products with two molds fermentation was overall lower than that with single strain fermentation. Fermentation with composite strains containing Candida tropicalis CICIM Y0079(T) had a similar glucosinolate content, whereas the protein content was remarkably increased compared to two molds fermentation. Under sterile conditions, a 96-h fermentation with the composite strains resulted in the degradation of 66.2% of crude fiber, 28.3% of phytic acid, and 98% of total glucosinolates, which are responsible for goiter, and an increase of the protein and tannins content by 27.4 and 15.8%, respectively. In addition, glucosinolates and protein content under the non-sterile condition were not significantly different compared to the sterile condition. The fermentation greatly improved the nutritional quality of rapeseed meal by both degrading undesired substances and increasing protein content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anupama R, Ravindra P (2000) Value-added food: single cell protein. Biotechnol Adv 18(6):459–479

    Article  PubMed  CAS  Google Scholar 

  • Barrette J, Gélinas P (2007) Protein enrichment of potato processing waste through yeast fermentation. Bioresour Technol 98:1138–1143

    Article  PubMed  Google Scholar 

  • Bau HM, Villaume C, Lin CF, Evrard J, Quemener B, Nicolas JP, Mkjean L (1994) Effect of a solid-state fermentation using Rhizopus oligosporus sp.T-3 on elimination of antinutritional substances and modification of biochemical constituents of defatted rapeseed meal. J Sci Food Agric 65:315–322

    Article  CAS  Google Scholar 

  • Bhat TK, Singh B, Sharma OP (1998) Microbial degradation of tannins – a current perspective. Biodegradation 9:343–357

    Article  PubMed  CAS  Google Scholar 

  • Butrindr B, Niamsup H, Shank L, Rakariyatham N (2004) Myrosinase overproducing mutants of Aspergillus sp. NR463. Ann Microbiol 54(4):93–501

    Google Scholar 

  • Das MM, Singhal KK (2005) Effect of feeding chemically treated mustard cake on growth, thyroid and liver function and carcass characteristics in kids. Small Ruminant Res 56:31–38

    Article  Google Scholar 

  • Dvorakova J (1998) Phytase, sources, preparation and exploitation. Folia Microbiol 43(4):323–338

    Article  CAS  Google Scholar 

  • Ebune A, Al-Asheh S, Duvnjak Z (1995) Production of phytase during solid-state fermentation using Aspergillus Ficuum NRRL 3135 in canola meal. Bioresour Technol 53(1):7–12

    Article  CAS  Google Scholar 

  • Ezekiel OO, Aworh OC, Blaschek HP, Ezeji TC (2010) Protein enrichment of cassava peel by submerged fermentation with Trichoderma viride (ATCC 36316). Afr J Biotechnol 9(2):187–194

    CAS  Google Scholar 

  • Fahey JW, Wade KL, Stephenson KK, Chou FE (2003) Separation and purification of glucosinolates from crude plant homogenates by high-speed counter-current chromatography. J Chromatogr A 996:85–93

    Article  PubMed  CAS  Google Scholar 

  • Hagerman AE, Butler LG (1978) Protein precipitation method for the quantitative determination of tannins. J Agric Food Chem 26:809–812

    Article  CAS  Google Scholar 

  • Haug W, Lantzsch HJ (1983) Sensitive method for the rapid determination of phytate in cereals. J Agric Food Chem 34:1423–1426

    Article  CAS  Google Scholar 

  • Joseph I, Paulraj R, Bhatnagar D (2008) Effect of solid state fermentation on nutrient composition of selected feed ingredients. Indian J Fish 55(4):327–332

    Google Scholar 

  • Lateef A, Oloke JK, Kana EBG, Oyeniyi SO, Onifade OR, Oyeleye AO, Oladosu OC, Oyelami AO (2008) Improving the quality of agro-wastes by solid-state fermentation: enhanced antioxidant activities and nutritional qualities. World J Microbiol Biotechnol 24:2369–2374

    Article  CAS  Google Scholar 

  • Mińkowski K (2002) Influence of dehulling of rapeseeds on chemical composition of meal. Anim Feed Sci Technol 96:237–244

    Article  Google Scholar 

  • Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984

    Article  CAS  Google Scholar 

  • Naczk M, Nichols T, Pink D, Sosulski F (1994) Condensed tannins in canola hulls. J Agic Food Chem 42:2196–2200

    Article  CAS  Google Scholar 

  • Oboh G (2006) Nutrient enrichment of Cassava peels using a mixed culture of Saccharomyces cerevisiae and Lactobacillus spp. Solid media fermentation techniques. Electron J Biotechnol 9:46–49

    Article  CAS  Google Scholar 

  • Palop ML, Smiths JP, Brink B (1995) Degradation of sinigrin by Lactobacillus agilis strain R16. Int J Food Microbiol 26:219–229

    Article  CAS  Google Scholar 

  • Rajesh N, Imelda-Joseph RRP (2010) Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry. Waste Manag 30(11):2223–2227

    Article  PubMed  CAS  Google Scholar 

  • Rakariyatham N, Sakorn P (2002) Biodegradation of glucosinolates in brown mustard seed meal (Brassica juncea) by Aspergillus sp. NR-4201 in liquid and solid-state cultures. Biodegradation 13:395–399

    Article  PubMed  CAS  Google Scholar 

  • Rakariyatham N, Butr-indr B, Niamsup H, Shank L (2005) Screening of filamentous fungi for production of myrosinase. Braz J Microbiol 36:242–245

    Article  CAS  Google Scholar 

  • Rakariyatham N, Butr-Indr B, Niamsup H, Shank L (2006) Improvement of myrosinase activity of Aspergillus sp. NR4617 by chemical mutagenesis. Electron J Biotechnol 9(4):379–385

    Article  Google Scholar 

  • Rozan P, Villaume C, Bau HM, Schwertz A, Nicolas JP, Méjean L (1996) Detoxication of rapeseed meal by Rhizopus oligosporus sp-T3: A first step towards rapeseed protein concentrate. Int J Food Sci Technol 31:85–90

    Article  CAS  Google Scholar 

  • Sakorn P, Rakariyatham N, Niamsup H, Kovitaya P (1999) Sinigrin degradation by Aspergillus sp. NR-4201 in liquid culture. Sci Asia 25:189–194

    Article  CAS  Google Scholar 

  • Sakorn P, Rakariyatham N, Niamsup H, Nongkunsarn P (2002) Rapid detection of myrosinase-production fungi: a plate method based on opaque barium sulphate formation. World J Microbiol Biotechnol 18:73–74

    Article  CAS  Google Scholar 

  • Smits JP, Knol W, Bol J (1993) Glucosinolate degradation by Aspergillus clavatus and Fusarium oxysporum in liquid and solid-state fermentation. Appl Microbiol Biotechnol 38:696–701

    Article  CAS  Google Scholar 

  • Travers-Martin N, Kuhlmann F, Müller C (2008) Determination of free and complexed myrosinase activities in plant extracts. Plant Physiol Biochem 46:506–516

    Article  PubMed  CAS  Google Scholar 

  • Vig AP, Walia A (2001) Beneficial effects of Rhizopus oligosporus fermentation on reduction of glucosinolates, fiber and phytic in rapeseed (Brassica napus) meal. Bioresour Technol 78:309–312

    Article  PubMed  CAS  Google Scholar 

  • Wallig MA, Belyea RL, Tumbleson ME (2002) Effect of pelleting on glucosinolates content of Crambe meal. Anim Feed Sci Technol 99:205–214

    Article  CAS  Google Scholar 

  • Wathelet J-P, Wagstaffe PJ, Biston R, Marlier M, Severin M (1988) Rapeseed reference materials for glucosinolate analysis. Fresen J Anal Chem 332:689–693

    Article  CAS  Google Scholar 

  • Wilkinson AP, Rhodges MJC, Fenwick GR (1984) Determination of myrosinase (thioglucoside glucohydrolase) activity by spectrophotometric coupled enzyme assay. Anal Biochem 139:284–291

    Article  PubMed  CAS  Google Scholar 

  • Wodzinski RJ, Ullah AHJ (1996) Phytase. Adv Appl Microbiol 42:263–302

    Article  PubMed  CAS  Google Scholar 

  • Wu B, Zhang G, Shuang S, Dong C, Choi MMF, Lee AWM (2004) A biosensor with myrosinase and glucose oxidase bienzyme system for determination of glucosinolates in seeds of commonly consumed vegetables. Sens Actuat B 106:700–707

    Google Scholar 

  • Xiao L, Yang LY, Zhang Y, Gu YF, Jiang LJ, Qin BQ (2009) Solid state fermentation of aquatic macrophytes for crude protein extraction. Ecol Eng 35:1668–1676

    Article  Google Scholar 

Download references

Acknowledgement

The work is supported by the National Key Technology R&D Program in the 11th Five year Plan of China (Contract No: 2009BADB9B08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguo Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Jin, Q., Wang, T. et al. Screening of glucosinolate-degrading strains and its application in improving the quality of rapeseed meal. Ann Microbiol 62, 1013–1020 (2012). https://doi.org/10.1007/s13213-011-0341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0341-3

Keywords

Navigation