Skip to main content
Log in

Phytase: Sources, preparation and exploitation

  • Review
  • Published:
Folia Microbiologica Aims and scope Submit manuscript

Abstract

This review deals with phytase (myo-inositol hexakisphosphate phosphohydrolase) and covers microbiological sources, phytase occurrence in plants and animals, its purification, physico-chemical and molecular properties. Protein engineering of phytase and potential enzyme applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeola O., Lawrence B.V., Sutton A.L., Cline T.R.: Phytase-induced changes in mineral utilization in zinc-supplemented diets for pigs.J. Anim. Sci.73, 3384–3391 (1995).

    PubMed  CAS  Google Scholar 

  • Al Asheh S., Duvnjak Z.: Effect of glucose concentration on the biomass and phytase productions and the reduction of the phytic acid content in canola meal byAspergillus carbonarius.Biotechnol. Prog.10, 353–359 (1994a).

    Article  Google Scholar 

  • Al Asheh S., Duvnjak Z.: The effect of surfactants on the phytase production and the reduction of the phytic acid content in canola meal byAspergillus carbonarius during a solid-state fermentation process.Biotechnol. Lett.16, 183–188 (1994b).

    Article  Google Scholar 

  • Al Asheh S., Duvnjak Z.: Characteristics of phytase produced byAspergillus carbonarius NRC 401121 in canola meal.Acta Biotechnol.14, 223–233 (1994c).

    Article  Google Scholar 

  • Al Asheh S., Duvnjak Z.: Phytase production and decrease of phytic acid content in canola meal byAspergillus carbonarius in solid-state fermentation.World J. Microbiol. Biotechnol.11, 228–231 (1995a).

    Article  Google Scholar 

  • Al Asheh S., Duvnjak Z.: The effect of phosphate concentration on phytase production and the reduction of phytic acid content in canola meal byAspergillus carbonarius during a solid-state fermentation process.Appl. Microbiol. Biotechnol.43, 25–30 (1995b).

    Article  Google Scholar 

  • Alko: Phytate-degrading enzyme,e.g. phytase and acid phosphatase over-production.Pat. WO 9 403 612 (1994).

  • Amano Pharmaceuticals: Novel phytase.Japan Pat. 07 067 635 (1995).

  • Anno T., Nakanishi K., Matsuno R., Kamikubo T.: Enzymatic elimination of phytate in soybean milk.J. Japan. Soc. Food Sci. Technol.32, 174–180 (1985).

    CAS  Google Scholar 

  • Asada K., Tanaka K., Kasai Z.: Formation of phytic acid in cereal grains.Ann. N. Y. Acad. Sci.165, 801–814 (1969).

    PubMed  CAS  Google Scholar 

  • Aveve: Synergistic enzyme composition for hydrolyzing phytic acid in feed.Pat. EP 619 369 (1994).

  • Baldi B.G., Scott J.J., Everard J.D., Loewus F.A.: Localization of constitutive phytases in lily pollen and properties of the pH 8 form.Plant Sci.56, 137–147 (1988).

    Article  CAS  Google Scholar 

  • Barrientos L., Scott J.J., Murthy P.P.: Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen.Plant Physiol.106, 1489–1495 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Berka R.M., Yoder W., Takagi S., Boominathan K.C.(Novo-Nordisk-Biotech): Aspergillus foetidus cells expressing heterologous enzyme. The fungal promotor isAspergillus niger phytase.Pat. WO 9 515 390 (1995a).

  • Berka R.M., Yoder W., Takagi S., Boominathan K.C.(Novo-Nordisk-Biotech): Aspergillus japonicus-type cells expressing heterologous enzyme. The fungal promotor isAspergillus niger phytase.Pat. WO 9 515 391 (1995b).

  • Berridge M.J., Irvine R.F.: Inositol trisphosphate, a novel second messenger in cellular signal transduction.Nature312, 315–321 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Biehl R.R., Baker D.H.: Microbial phytase improves amino acid utilization in young chicks fed diets based on soybean meal but not diets based on peanut meal.Poultry Sci.76, 355–360 (1997).

    CAS  Google Scholar 

  • Biehl R.R., Baker D.H., DeLuca H.F.: 1α-Hydroxylated cholecalciferol compounds act additively with microbial phytase to improve phosphorus, zinc and manganese utilization in chicks fed soy-based diets.J. Nutr.125, 2407–2416 (1995).

    PubMed  CAS  Google Scholar 

  • Billington D.C.:The Inositol Phosphates. Chemical Synthesis and Biological Significance. Verlag Chemie, Weinheim 1993.

    Google Scholar 

  • Bitar K., Reinhold J.G.: Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf, and man.Biochim. Biophys. Acta268, 442–452 (1972).

    PubMed  CAS  Google Scholar 

  • Blatný P., Kvasnička F., Kenndler E.: Time course of formation of inositol phosphates during enzymatic hydrolysis of phytic acid (myo-inositol hexaphosphoric acid) by phytase determined by capillary isotachophoresis.J. Chromatogr.A679, 345–348 (1994).

    Article  Google Scholar 

  • Brocades: DNA sequence encoding phytase.Pat. EP 420 358 (1991a).

  • Brocades: Production of phytase in transgenic plant or plant organ.Pat. EP 449 375 (1991b).

  • Brocades: Use of seed containing heterologous recombinant enzyme,e.g. phytase, α-amylase from transgenic plant.Pat. EP 449 376 (1991c).

  • Brocades: A gene expression and protein secretion vector system for a fungus.Pat. EP 549 062 (1993).

  • Broz J., Oldale P., Perrin-Voltz A.H., Rychen G., Schulze J., Nunes C.S.: Effect of supplemental phytase on performance and phosphorus utilization in broiler chickens fed a low phosphorus diet without addition of inorganic phosphates.Brit. Poultry Sci.35, 273–280 (1994).

    Article  CAS  Google Scholar 

  • Cason J., Anderson R.J.: The chemistry of the lipids of tubercle bacilli. LVI. The wax of the bovine tubercle bacillus.J. Biol. Chem.126, 527–541 (1938).

    CAS  Google Scholar 

  • Chelius M.K., Wodzinski R.J.: Strain improvement ofAspergillus niger for phytase production.Appl. Microbiol. Biotechnol.41, 79–83 (1994).

    Article  CAS  Google Scholar 

  • Chen L.H., Pan S.H.: cited in J.V. Erdman Jr.: Oilseed phytates: nutritional implications.J. Am. Oil Chem. Soc.56, 739–741 (1979).

    Article  Google Scholar 

  • Conneely O.M.: From DNA to feed conversion: using biotechnology to improve enzyme yields and livestock performance.Biotechnol. Feed Ind. 57–66 (1992).

  • Cornelissen B.J.C., Hooft van Huysduynen R.A.M., Bol J.F.: A tobacco mosaic virus-induced tobacco protein is homologous to the sweet-tasting protein thaumatin.Nature321, 531–532 (1986).

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove D.J.: Ion-exchange chromatography of inositol polyphosphates.Ann. N. Y. Acad. Sci.165, 677–686 (1969).

    PubMed  CAS  Google Scholar 

  • Cosgrove D.J.: Inositol phosphatases of microbial origin. Inositol phosphate intermediates in the dephosphorylation of the hexaphosphates ofmyo-inositol,scyllo-inositol, andd-chiro-inositol by a bacterial (Pseudomonas sp.) phytase.Austral. J. Biol. Sci.23, 1207–1220 (1970).

    CAS  Google Scholar 

  • Cosgrove D.J.:Inositol Phosphates. Their Chemistry, Biochemistry and Physiology. Elsevier, Amsterdam 1980.

    Google Scholar 

  • Cromwell G.L., Coffey R.D., Monegue H.J., Randolph J.H.: Efficacy of low-activity, microbial phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs.J. Anim. Sci.73, 449–456 (1995a).

    PubMed  CAS  Google Scholar 

  • Cromwell G.L., Coffey R.D., Parker G.R., Monegue H.J., Randolph J.H.: Efficacy of a recombinant-derived phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs.J. Animal Sci.73, 2000–2008 (1995b).

    CAS  Google Scholar 

  • Cromwell G.L., Stahly T.S., Coffey R.D., Monegue H.J., Randolph J.H.: Efficacy of phytase in improving the bioavailability of phosphorus in soybean meal and corn-soybean meal diets for pigs.J. Animal Sci.71, 1831–1840 (1993).

    CAS  Google Scholar 

  • Dasgupta S., Dasgupta D., Sen M., Biswas S., Biswas B.B.: Interaction ofmyo-inositol trisphosphate phytase complex with the receptor for intracellular Ca2+ mobilization in plants.Biochemistry35, 4994–5001 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Day P.R.: Genetic modification of plants: significant issues and hurdles to success.Am. J. Clin. Nutr.63, 651S-656S (1996).

    PubMed  CAS  Google Scholar 

  • Delucca A.J., Dischinger C., Ullah A.H.J.: Identification of a phytase fromCitrobacter freundii.Abstr. Gen. Meet. Am. Soc. Microbiol.92 Meet. 385 (1992).

    Google Scholar 

  • Dischinger H.C. Jr.,Ullah A.H.J.: Immobilization ofAspergillus ficuum phytase by carbohydrate moieties onto cross-linked agarose.Ann. N. Y. Acad. Sci.672, 583–587 (1992).

    Article  CAS  Google Scholar 

  • Dvořáková J, Kopecký J., Havlíček V., Křen V.:myo-Inositol phosphates produced by microbial phytase.15th Congr. Biochemistry, Olomouc (Czech Republic) 1996;Chem. listy90, 604–605 (1996).

  • Dvořáková J., Volfová O, Kopecký J.: Characterization of phytase produced byAspergillus niger.Folia Microbiol.42, 349–352 (1997).

    Article  Google Scholar 

  • Eastwood D., Laidman D.L.: The metabolization of macronutrient elements in the germinating wheat grain.Phytochemistry10, 1275–1284 (1971).

    Article  CAS  Google Scholar 

  • Eastwood D., Tavener R.J.A., Laidman D.L.: Induction of lipase and phytase activities in the aleurone tissue of germinating wheat grains.Biochem. J.113, Proc. Biochem. Soc., p. 32 (1969).

    Google Scholar 

  • Ebune A., Al Asheh S., Duvnjak Z: Production of phytase during solid-state fermentation usingAspergillus ficuum NRRL 3135 in canola meal.Bires. Technol.53, 7–12 (1995).

    Article  CAS  Google Scholar 

  • Edwards H.M. Jr.: Dietary 1,25-dihydroxycholecalciferol supplementation increases natural phytate phosphorus utilization in chickens.J. Nutr.123, 567–577 (1993).

    PubMed  CAS  Google Scholar 

  • Ehrlich K.C., Montalbano B.G., Mullaney E.J., Dischinger H.C., Jr.,Ullah A.H.: Identification and cloning of a second phytase gene (phyB) fromAspergillus niger (ficuum).Biochem. Biophys. Res. Commun.195, 53–57 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Erdman J.W. Jr.: Oilseed phytates: nutritional implications.J. Am Oil Chem. Soc.56, 736–741 (1979).

    Article  CAS  Google Scholar 

  • Finnish National Public Health Institute: Gram-positive bacterial expression system for enhanced secretion of exoproteins.Pat. WO 9 419 471 (1994).

    Google Scholar 

  • Freund W.D., Mayr G.W., Tietz C., Schultz J.E.: Metabolism of inositol phosphates in the protozoanParamecium. Characterization of a novel inositol hexakisphosphate-dephosphorylating enzyme.Eur. J. Biochem.207, 359–367 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Frolich W.: Chelating properties of dietary fiber and phytate. The role for mineral availability.Adv. Exp. Med. Biol.270, 83–93 (1990).

    PubMed  CAS  Google Scholar 

  • Ghareib M.: Biosynthesis, purification and some properties of extracellular phytase fromAspergillus carneus.Acta Microbiol. Hung.37, 159–164 (1990).

    PubMed  CAS  Google Scholar 

  • Gibson D.M.: Production of extracellular phytase fromAspergillus ficuum on starch media.Biotechnol. Lett.9, 305–310 (1987).

    Article  CAS  Google Scholar 

  • Gibson D.M., Ullah A.H.: Purification and characterization of phytase from cotyledons of germinating soybean seeds.Arch. Biochem. Biophys.260, 503–513 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Gibbins M.P., Norris F.W.: Phytase and acid phosphatase in the dwarf bean,Phaseolus vulgaris.Biochem. J.86, 67–71 (1963).

    PubMed  CAS  Google Scholar 

  • Greaves M.P., Anderson G., Webley D.M.: The hydrolysis of inositol phosphates byAerobacter aerogenes.Biochim. Biophys. Acta132, 412–418 (1967).

    PubMed  CAS  Google Scholar 

  • Greiner R., Haller E., Konietzny U., Jany K.D.: Purification and characterization of a phytase fromKlebsiella terrigena.Arch. Biochem. Biophys.341, 201–206 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Greiner R., Jany K.D.: The reduction of phytate in animal feedstuffs by anEscherichia coli phytase.Dechema-Biotechnol. Conf. 5, Pt. B, 829–832 (1992).

    CAS  Google Scholar 

  • Greiner R., Konietzny U., Jany K.D.: Purification and characterization of two phytases fromEscherichia coli.Arch. Biochem. Biophys.303, 107–113 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Greiner R., Konietzny U.: Construction of a bioreactor to produce special breakdown products of phytate.J. Biotechnol.48, 153–159 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Han Y.W., Gallagher D.J.: Phosphatase production byAspergillus ficuum.J. Ind. Microbiol.1, 295–301 (1987).

    Article  CAS  Google Scholar 

  • Han Y.W., Gallagher D.J., Wilfred A.G.: Phytase production byAspergillus ficuum on semisolid substrate.J. Ind. Microbiol.2, 195–200 (1987).

    Article  CAS  Google Scholar 

  • Han Y.W., Yang F., Zhou A.G., Miller E.R., Ku P.K., Hogberg M.G., Lei X.G.: Supplemental phytases of microbial and cereal sources improve dietary phytate phosphorus utilization by pigs from weaning through finishing.J. Animal. Sci.75, 1017–1025 (1997).

    CAS  Google Scholar 

  • Hara A., Ebina S., Kondo A., Funaguma T.: A new type of phytase from pollen ofTypha latifolia L..Agric. Biol. Chem.49, 3539–3544 (1985).

    CAS  Google Scholar 

  • Howson S.J., Davis R.J.: Production of phytate-hydrolysing enzyme by fungi.Enzyme Microbiol. Technol.5, 377–382 (1983).

    Article  CAS  Google Scholar 

  • Ichibiki: Phytase and its preparation.Japan Pat. 07 059 562 (1995).

  • Igbal T.H., Lewis K.O., Cooper B.T.: Phytase activity in the human and rat small intestine.Gut35, 1233–1236 (1994).

    Article  Google Scholar 

  • Irving G.C.J.: Phytase, in D.J. Cosgrove,Inositol Phosphates. Their Chemistry, Biochemistry and Physiology, Elsevier, Amsterdam 1980.

    Google Scholar 

  • IUPAC-IUB Enzyme Nomenclature Reconmendation Supplement 1: Corrections and additions (1975).Biochim. Biophys. Acta429, 1 (1975).

  • Jareonkitmongkol S., Ohya M., Watanabe R., Takagi H., Nakamori S.: Partial purification of phytase from a soil isolate bacterium,Klebsiella oxytoca MO-3.J. Ferment. Bioeng.83, 393–394 (1997).

    Article  CAS  Google Scholar 

  • Johnson L.F., Tate M.E.: The structure ofmyo-inositol pentaphosphates.Ann. A. N. Acad. Sci.165, 526–532 (1969).

    CAS  Google Scholar 

  • Jongbloed A.W., Mroz Z., Kemme P.A.: The effect of supplementaryAspergillus niger phytase in diets for pigs on concentration and apparent digestibility of dry matter, total phosphorus, and phytic acid in different sections of the alimentary tract.J. Animal Sci.70, 1159–1168 (1992).

    CAS  Google Scholar 

  • Ketaren P.P., Batterham E.S., Dettmann E.B., Farrell D.J.: Phosphorus studies in pigs. 3. Effect of phytase supplementation on the digestibility and availability of phosphorus in soy-bean meal for grower pigs.Brit. J. Nutr.70, 289–311 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Khare S.K., Jha K., Gupta M.N.: Entrapment of wheat phytase in polyacrylamide gel and its application in soy milk phytate hydrolysis.Biotechnol. Appl. Biochem.19, 193–198 (1994).

    CAS  Google Scholar 

  • Kornegay E.T., Denbow D.M., Yi Z., Ravindran V.: Response of broilers to graded levels of microbial phytase added to maize-soybean-meal-based diets containing three levels of nonphytate phosphorus.Brit. J. Nutr.75, 839–852 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Kostrewa D., Gruninger Leitch F., D'Arcy A., Broger C., Mitchell D., van Loon A.P.: Crystal structure of phytase fromAspergillus ficuum at 2.5 Å resolution.Nat. Struct. Biol.4, 185–190 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kujawski M., Zyla K.: Relationship between citric acid production and accumulation of phytate-degrading enzymes inAspergillus niger mycelia.Acta Microbiol. Polon.41, 187–191 (1992).

    CAS  Google Scholar 

  • Laboure A.M., Gagnon J., Lescure A.M.: Purification and characterization of a phytase (myo-inositol hexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination.Biochem. J.295, 413–419 (1993).

    PubMed  CAS  Google Scholar 

  • Lambrechts C., Boze H., Moulin G., Galzy P.: Utilization of phytate by some yeasts.Biotechnol. Lett.14, 61–66 (1992).

    Article  CAS  Google Scholar 

  • Lambrechts C., Boze H., Segueilha L., Moulin G., Galzy P. Influence of culture of culture conditions on the biosyntheses ofSchwanniomyces castelii phytase.Biotechnol. Lett.15, 399–404 (1993).

    Article  CAS  Google Scholar 

  • Larsen T.: Dephytinization of a rat diet. Consequences for mineral and trace element absorption.Biol. Trace Elem. Res.39, 55–71 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Laumen K., Ghisalba O.: Preparative-scale chemo-enzymatic synthesis of optically pured-myo-inositol 1-phosphate.Biosci. Biotech. Biochem.58, 2046–2049 (1994).

    CAS  Google Scholar 

  • Lei X.G., Ku P.K., Miller E.R., Yokoyama M.T.: Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs.J. Animal Sci.71, 3359–3367 (1993a)

    CAS  Google Scholar 

  • Lei X.G., Ku P.K., Miller E.R., Yokoyama M.T., Ullrey D.E.: Supplementing corn-soybean meal diets with microbial phytase maximizes phytate phosphorus utilization by weanling pigs.J. Animal Sci.71, 3368–3375 (1993b).

    CAS  Google Scholar 

  • Lei X.G., Ku P.K., Miller E.R., Ullrey D.E., Yokoyama M.T.: Supplemental microbial phytase improves bioavailability of dietary zinc to weanling pigs.J. Nutr.123, 1117–1123 (1993c).

    PubMed  CAS  Google Scholar 

  • Lei X.G., Ku P.K., Miller E.R., Yokoyama M.T., Ullrey D.E.: Calcium level affects the efficacy of supplemental microbial phytase in corn-soybean meal diets of weanling pigs.J. Animal Sci.72, 139–143 (1994)

    CAS  Google Scholar 

  • Li J., Hegeman C.E., Hanlon R.W., Lacy G.H., Denbow M.D., Grabau E.A.: Secretion of active recombinant phytase from soybean cell-suspension cultures.Plant Physiol.114, 1103–1110 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Lim P.E., Tate M.E.: The phytase. II. Properties of phytase fractions F1 and F2 from wheat bran and theMyo-inositol phosphates produced by fraction F2.Biochim. Biophys. Acta302, 316–328 (1973).

    PubMed  CAS  Google Scholar 

  • Lolas M., Markakis P.: Phytase of navy beans.J. Food Sci.42, 1094–1097 (1977).

    Article  CAS  Google Scholar 

  • Lyons T.P.: Strategy for the future: the role of biotechnology in the feed industry.Biotechnol. Feed Ind. 1–22 (1992).

  • Maddaiah V.T., Kurnick A.A., Reid B.L.: Phytic acid studies.Proc. Soc. Exp. Biol. Med.115, 391–393 (1964).

    PubMed  CAS  Google Scholar 

  • Mandal N.C., Biswas B.B.: Metabolism of inositol phosphates. I. Phytase synthesis during germination in cotyledons of mung beans.Phaseolus aureus. Plant Physiol.45, 4–7 (1970).

    CAS  Google Scholar 

  • Maugenest S., Martinez I., Lescure A.M.: Cloning and characterization of a cDNA encoding a maize seedling phytase.Biochem. J.322, 511–517 (1997).

    PubMed  CAS  Google Scholar 

  • McCollum E.V., Hart E.B.: On the occurrence of a phytin-splitting enzyme in animal tissue.J. Biol. Chem.4, 497–500 (1908).

    Google Scholar 

  • Meyer H., Mayer A.M., Harel E.: Acid phosphatases in germinating lettuce—evidence for partial activation.Physiol. Plant.24, 95–101 (1971).

    Article  CAS  Google Scholar 

  • Michell R.H.: Inositol phospholipids and cell surface receptor function.Biochim. Biophys. Acta415, 81–147 (1975).

    PubMed  CAS  Google Scholar 

  • Mitchell D.B., Vogel K., Weimann B.J., Pasamontes L., van Loon A.P.: The phytase subfamily of histidine acid phosphatase: Isolation of genes for two novel phytases from theAspergillus terreus andMyceliophthora thermophila.Microbiology143, 245–252 (1997).

    PubMed  CAS  Google Scholar 

  • Mitsui Toatsu Chemicals: myo-Inositol preparation.Japan Pat. 4 365 489 (1992).

  • Moore E., Helly V.R., Conneely O.M., Ward P.P., Power R.F., Headon D.R.: Molecular cloning, expression and evaluation of phosphorydrolases for phytate-degrading activity.J. Ind. Microbiol.14, 396–402 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Mroz Z., Jongbloed A.W., Kemme P.A.: Apparent digestibility and retention of nutrients bound to phytate complexes as influenced by microbial phytase and feeding in pigs.J. Animal Sci.72, 126–132 (1994).

    CAS  Google Scholar 

  • Mullaney E.J., Gibson D.M., Ullah A.H.J.: Positive identification of a γ gt11 clone containing a region of fungal phytase gene by immunoprobe and sequence verification.Appl. Microbiol. Biotechnol.35, 611–614 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Murry A.C., Lewis R.D., Amos H.E.: The effect of microbial phytase in a pearl millet-soybean meal diet on apparent digestibility and retention of nutrients, serum mineral concentration, and bone mineral density of nursery pigs.J. Animal Sci.75, 1248–1291 (1997).

    Google Scholar 

  • Nagai Y., Funahashi S.: Phytase (myo-inositol-hexakisphosphate phosphohydrolase) from wheat bran.Agric. Biol. Chem.26, 794–803 (1962).

    CAS  Google Scholar 

  • Nagai Y., Funahashi S.: Phytase from wheat bran. II. Successive dephosphorylation ofmyo-inositol hexaphosphate by wheat bran phytase.Agric. Biol. Chem.27, 619–624 (1963).

    CAS  Google Scholar 

  • Nair V.C., Duvnjak Z.: Reduction of phytic acid content in canola meal byAspergillus ficuum in solid-state fermentation process.Appl. Microbiol. Biotechnol.34, 183–188 (1990).

    Article  CAS  Google Scholar 

  • Nair V.C., Laflamme J., Duvnjak Z.: Production of phytase byAspergillus ficuum and reduction of phytic acid content in canola meal.J. Sci. Food Agric.54, 356–365 (1991).

    Article  Google Scholar 

  • Nayini N.R., Markakis P.: The phytase of yeast.Lebensm. Wiss. Technol.17, 24–26 (1984).

    CAS  Google Scholar 

  • Nayini N.R., Markakis P.: Phytases, inPhytic Acid: Chemistry and Applications. Pilatus Press, Mineapolis 1986.

    Google Scholar 

  • Newman K.: Phytase: the enzyme, its origin and characteristics: impact and potential for increasing phosphorus availability, pp. 169–177 inBiotechnology in the Feed Industry, Proc. Alltech's 7th Ann. Symp. (T.P. Lyons, Ed.). Alltech Technical Publications, Nicholasville (Kentucky) 1991.

    Google Scholar 

  • O'Quinn P.R., Knabe D.A., Gregg E.J.: Efficacy of Natuphos in sorghum-based diets of finishing swine.J. Animal Sci.75, 1299–1307 (1997).

    Google Scholar 

  • Ostanin K., Harms E., Stevis P.E., Kuciel R., Zhou M.M., Van Etten R.L.: Overexpression, site-directed mutagenesis, and mechanism ofEscherichia coli acid phosphatase.J. Biol. Chem.267, 22830–22836 (1992).

    PubMed  CAS  Google Scholar 

  • Oto Y.: cited in K. Bitar, J.G. Reinhold: Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf, and man.Biochim. Biophys. Acta268, 442–452 (1972).

    Google Scholar 

  • Pallauf J., Rimbach G., Pippig S., Schindler B., Hohler D., Most E.: Dietary effect of phytogenic phytase and an addition of microbial phytase to a diet based on field beans, wheat peas and barley on the utilization of phosphorus, calcium, magnesium, zinc and protein in piglets.Z. Ernährungswiss.33, 128–135 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Panlabs, Alko: Nucleic acid encoding phytase and acid 2.5 phosphatase.Pat. WO 9 403 072 (1994).

    Google Scholar 

  • Pasamontes L., Haiker M., Henriquezhuecas M., Mitchell D.B., van Loon A.P.G.M.: Cloning of the phytases fromEmericella nidulans and the thermophilic fungusTalaromyces thermophilus.Biochim. Biophys. Acta1353, 217–223 (1997).

    PubMed  CAS  Google Scholar 

  • Pasamontes L., Haiker M., Wyss M., Tessier, van Loon A.P.: Gene cloning, purification, and characterization of a heat-stable phytase from the fungusAspergillus fumigatus.Appl. Environ. Microbiol.63, 1696–1700 (1997).

    PubMed  CAS  Google Scholar 

  • Patwardhan V.N.: The occurrence of a phytin splitting enzyme in the intestines of albino rats.Biochem. J.31, 560–564 (1937).

    PubMed  CAS  Google Scholar 

  • Pen J., Verwoerd T.C., van Paridon P.A., Beudeker R.F., van den Elzen P.J.M.: Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization.Bio/Technology11, 811–814 (1993).

    Article  CAS  Google Scholar 

  • Pen J., Verwoerd T.C., van Paridon P.A., van Coyen A.J., van den Elzen P.J.M., Hoekema A.: Production of high-value proteins in plants.J. Cell. Biochem.18A, 77 (1994).

    Google Scholar 

  • Perney K.M., Cantor A.H., Straw M.L., Herkelman K.L.: The effect of dietary phytase on growth performance and phosphorus utilization of broiler chicks.Poultry Sci.72, 2106–2114 (1993).

    CAS  Google Scholar 

  • Pfeffer E.: cited in D.C. Billington.The Inositol Phosphates. Chemical Synthesis and Biological Significance. Verlag Chemie, Weinheim 1993.

    Google Scholar 

  • Phillippy B.Q., Mullaney E.J.: Expression of anAspergillus niger phytase (phyA) inEscherichia coli.J. Agric. Food Chem.45, 3337–3342 (1997).

    Article  CAS  Google Scholar 

  • Phillippy B.Q., White K.D., Johnston M.R., Tao S.H., Fox M.R.S.: Preparation of inositol phosphates from sodium phytate by enzymatic and nonenzymatic hydrolysis.Anal. Biochem.162, 115–121 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Piddington C.S., Houston C.S., Paloheimo M., Cantrell M., Miettinen Oinonen A., Nevalainen H., Rambosek J.: The cloning and sequencing of the genes encoding phytase (phy) and 2.5-optimum acid phosphatase (aph) fromAspergillus niger var.awamori.Gene133, 55–62 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Pileggi V.J.: Distribution of phytase in rat.Arch. Biochem. Biophys.80, 1–8 (1959).

    Article  CAS  Google Scholar 

  • Posternak T.:The Cyclitols. Hermann, Paris 1965.

    Google Scholar 

  • Powar V.K., Jagannathan V.: Phytase fromBacillus subtilis.Indian J. Biochem.4, 184–185 (1967).

    PubMed  CAS  Google Scholar 

  • Powar V.K., Jagannathan V.: Purification and properties of phytate-specific phosphatase fromBacillus subtilis.J. Bacteriol.151, 1102–1108 (1982).

    PubMed  CAS  Google Scholar 

  • Qian H., Kornegay E.T., Conner D.E. Jr.: Adverse effects of wide calcium phosphorus ratios on supplemental phytase efficacy for weanling pigs fed two dietary phosphorus levels.J. Animal Sci.74, 1288–1297 (1996).

    CAS  Google Scholar 

  • Qian H., Kornegay E.T., Denbow D.M.: Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium: total phosphorus ratio in broiler diets.Poultry Sci.76, 37–46 (1997).

    CAS  Google Scholar 

  • Qian H., Viet H.P., Kornegay E.T., Ravindran V., Denbow D.M.: Effects of supplemental phytase and phosphorus on histological and other tibial bone characteristics and performances of broilers fed semi-purified diets.Poultry Sci.75, 618–626 (1996).

    CAS  Google Scholar 

  • Rao R.K., Ramakrishnan C.V.: Studies on inositol phosphatase in rat small intestine.Enzyme33, 205–215 (1985).

    PubMed  CAS  Google Scholar 

  • Rapoport S., Leva E., Guest G.M.: Phytase in plasma and erythrocytes of vertebrates.J. Biol. Chem.139, 621–632 (1941).

    CAS  Google Scholar 

  • Richter G.: Use of microbial phytase at different phosphorus supply levels in broiler fatting. 1. Effect on fattening performance and tibia stability.Arch. Tieremähr.45, 235–244 (1993).

    CAS  Google Scholar 

  • Rimbach G., Brandt K., Most E., Pallauf J.: Supplemental phytic acid and microbial phytase change zinc bioavailability and cadmium accumulation in growing rats.J. Trace Elem. Med. Biol.9, 117–122 (1995).

    PubMed  CAS  Google Scholar 

  • Rimbach G., Pallauf J.: The effect of a supplement of microbial phytase on zinc availability.Z. Ernährungswiss.31, 269–277 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Rimbach G., Pallauf J.: Enhancement of zinc utilization from phytate-rich soy protein isolate by microbial phytase.Z. Ernahrungswiss.32, 308–315 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Roberson K.D., Edwards H.M. Jr.: Effects of 1,25-dihydroxycholecalciferol and phytase on zinc utilization in broiler chicks.Poultry Sci.73, 1312–1326 (1994).

    CAS  Google Scholar 

  • Rodehutscord M., Becker A., Pfeffer E.: Effect of supplementalAspergillus niger phytase on the utilization of plant phosphorus by rainbow trout (Oncorhynchus mykiss).Arch. Tierenähr.48, 211–219 (1995).

    CAS  Google Scholar 

  • Samanta S., Dalal B., Biswas S., Biswas B.B.:myo-inositol tris-phosphate-phytase complex as an elicitor in calcium mobilization in plants.Biochem. Biophys. Res. Commun.191, 427–434 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Sandberg A.S., Andersson H.: Effect of dietary phytase on the digestion of phytate in the stomach small intestine of humans.J. Nutr.118, 469–473 (1988).

    PubMed  CAS  Google Scholar 

  • Sandberg A.S., Hulthen L.R., Turk M.: DietaryAspergillus niger phytase increases iron absorption in humans.J. Nutr.126, 476–480 (1996).

    PubMed  CAS  Google Scholar 

  • Sandberg A.S., Larsen T., Sandstrom B.: High dietary calcium level decreases colonic phytate degradation in pigs fed a rapeseed diet.J. Nutr.123, 559–566 (1993).

    PubMed  CAS  Google Scholar 

  • Sanders J.P.M.: Biotechnology closes natural product cycles.Chem. Mag.10, 475–777 (1993).

    Google Scholar 

  • Satirana M.L., Bianchetti R.: The effects of phosphate on the development of phytase in the wheat embryo.Physiol. Plant.20, 1066–1075 (1967).

    Article  Google Scholar 

  • Scott J.J.: Alkaline phytase activity in nonionic detergent extracts of legume seeds.Plant Physiol.95, 1298–1301 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Scott J.J., Loewus F.A.: A calcium activated phytase from pollen ofLilium longiflorum.Plant Physiol.82, 333–335 (1986).

    PubMed  CAS  Google Scholar 

  • Sebastian S., Touchburn S.P., Chavez E.R., Lague P.C.: The effect of supplemental phytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broiler chickens fed corn-soybean diets.Poultry Sci.76, 729–736 (1996).

    Google Scholar 

  • Segueilha L., Lambrechts C., Boze H., Moulin G., Galzy P.: Purification and properties of the phytase fromSchwanniomyces castelii.J. Ferment. Bioeng.74, 7–11 (1992).

    Article  CAS  Google Scholar 

  • Segueilha L., Moulin G., Galzy P.: Reduction of phytate content in wheat bran and glandless cotton flour bySchwanniomyces castelii.J. Agric. Food Chem.41, 2451–2454 (1993).

    Article  CAS  Google Scholar 

  • Shah V., Parekh L.J.: Phytase fromKlebsiella sp. no. PG-2: purification and properties.Indian. J. Biochem. Biophys.27, 98–102 (1990).

    PubMed  CAS  Google Scholar 

  • Shieh T.R., Ware J.H.: Survey of microorganismus for the production of extracellular phytase.Appl. Microbiol.16, 1348–1351 (1968).

    PubMed  CAS  Google Scholar 

  • Shieh T.R., Wodzinski R.J., Ware J.H.: Regulation of the formation of acid phosphatase by inorganic phosphate inAspergillus ficuum.J. Bacteriol.100, 1161–1165 (1969).

    PubMed  CAS  Google Scholar 

  • Shimizu M.: Purification and characterization of phytase fromBacillus subtilis (natto) N-77.Biosci. Biotechnol. Biochem.56, 1266–1269 (1992).

    Article  CAS  Google Scholar 

  • Shimizu M.: Purification and characterization of phytase and acid phosphatase produced byAspergillus oryzae K1.Biosci. Biotech. Biochem.57, 1364–1365 (1993).

    Article  CAS  Google Scholar 

  • Shirai K., Revah Moiseev S., Garcia-Garibary M., Marshall V.M.: Ability of some strains of lactic acid bacteria to degrade phytic acid.Lett. Appl. Microbiol.19, 366–369 (1994).

    CAS  Google Scholar 

  • Sijmons P.C., Dekker B.M.M., Schrammeyer B., Verwoerd T.C., van den Elzen P.J.M., Hoekema A.: Production of correctly processed human serum albumin in transgenic plants.Bio/Technology8, 217–221 (1991).

    Article  Google Scholar 

  • Simell M., Turunen M., Piironen J., Vaara T.: Feed and food applications of phytase. Lecture at3rd Meet. Industrial Applications of Enzymes, Barcelona (Spain) 1989.

  • Simons P.C.M., Versteegh H.A.J., Jongbloed A.W., Kemme P.A., Slump P., Bos K.D., Wolters M.G.E., Beudeker R.F., Verschoor G.J.: Improvement of phosphorus availability by microbial phytase in broilers and pigs.Brit. J. Nutr.64, 525–540 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Siren M.: Stabilized pharmaceutical and biological material composition.Pat. SE 003 165 (1986a).

    Google Scholar 

  • Siren M.: Newmyo-inositol triphosphoric acid isomer.Pat. SW 052 950 (1986b).

    Google Scholar 

  • Skowronski T.: Some properties of partially purified phytase fromAspergillus niger.Acta Microbiol. Polon.27 41–48 (1978).

    CAS  Google Scholar 

  • Souppe J.: Recent progress in the industrial application of enzymes.C. R. Acad. Agric. Fr.81, 19–26 (1995).

    CAS  Google Scholar 

  • Spitzer R.S., Phillips P.H.: cited in K. Bitar, J.G. Reinhold. Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf, and man.Biochim. Biophys. Acta268, 442–452 (1972).

    Google Scholar 

  • Sutardi M., Buckle K.A.: Characterization of extra- and intracellular phytase fromRhizopus oligosporus used in tempeh production.Int. J. Food Microbiol.6, 67–69 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Suzuki U., Yoshimura K., Takaishi M.: cited in D.J. Cosgrove:Inositol Phosphates. Their Chemistry, Biochemistry and Physiology. Elsevier, Amsterdam 1980.

    Google Scholar 

  • Tambe S.M., Kalij G.S., Kelkar S.M., Parekh L.J.: Two distinct molecular forms of phytase fromKlebsiella aerogenes: Evidence for unusually small active enzyme peptide.J. Ferment. Bioeng.77, 23–27 (1994).

    Article  CAS  Google Scholar 

  • Tamminga S.: Biotechnology and improvement of animal nutrition.J. Meded. Fac. Landbouwwet Rijksuniv. Gent.55, 1373–1382 (1990).

    Google Scholar 

  • Ullah A.H.J.: Production, rapid purification and catalytic characterization of extracellular phytase fromAspergillus ficuum.Prep. Biochem.18, 443–458 (1988a).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J.:Aspergillus ficuum phytase: Partial primary structure, substrate selectivity, and kinetic characterization.Prep. Biochem.18, 459–471 (1988b).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J., Cummins B.J.:Aspergillus ficuum extracellular phytase: Immobilization on glutaraldehyde-activated silicate.Ann. N. Y. Acad. Sci.542, 102–106 (1988).

    Article  CAS  Google Scholar 

  • Ullah A.H.J., Cummins B.J.: Immobilization ofAspergillus ficuum extracellular phytase on fractogel.Biotechnol. Appl. Biochem.9, 380–388 (1987).

    CAS  Google Scholar 

  • Ullah A.H.J., Cummins B.J.: Purification, N-terminal amino acid sequence and characterization of pH 2.5 optimum acid phosphatase (EC 3.1.3.2) fromAspergillus ficuum.Prep. Biochem.17, 397–422 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J., Cummins B.J., Dischinger H.C. Jr.: Cyclohexanedione modification of arginine at the active site ofAspergillus ficuum phytase.Biochem. Biophys. Res. Commun.178, 45–53 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J., Dischinger H.C. Jr.:Aspergillus ficuum extracellular phytase: peptide mapping and purification.Ann. N. Y. Acad. Sci.613, 878–882 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J., Dischinger H.C. Jr.: Identification of residues involved in active-site formation inAspergillus ficuum phytase.Ann. N. Y. Acad. Sci.672, 45–51 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J., Dischinger H.C. Jr.:Aspergillus ficuum phytase: Complete primary structure elucidation by chemical sequencing.Biochem. Biophys. Res. Commun.192, 475–453 (1993a).

    Google Scholar 

  • Ullah A.H.J., Dischinger H.C. Jr.: Identification of active site residues inAspergillus ficuum extracellular pH 2.5 optimum acid phosphatase.Biochem. Biophys. Res. Commun.192, 754–759 (1993b).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J., Dischinger H.C. Jr.:Aspergillus ficuum phytase active site: involvement of Arg and Trp residues.Ann. N. Y. Acad. Sci.750, 51–57 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J., Gibson D.M.: Extracellular phytase (E.C. 3.1.3.8) fromAspergillus ficuum NRRL 3135: purification and characterization.Prep. Biochem.17, 63–91 (1987).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J., Mullaney E.J.: Disulfide bonds are necessary for structure and activity inAspergillus ficuum phytase.Biochem. Biophys. Res. Commun.227, 311–317 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Ullah A.H.J., Phillippy B.Q.: Substrate selectivity inAspergillus ficuum phytase and acid phosphatase usingmyo-inositol phosphates.J. Agric. Food. Chem.42, 423–425 (1994).

    Article  CAS  Google Scholar 

  • Ullah A.H.J., Phillippy B.Q.: Immobilization ofAspergillus ficuum phytase: product characterization of the reactor.Prep. Biochem.18, 483–489 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Van Etten R.L., Davidson R., Stevis P.E., MacArthur H., Moore D.L.: Covalent structure, disulfide binding, and identification of reactive surface and active site residues of human prostatic acid phosphatase.J. Biol. Chem.266, 2313–2319 (1991).

    PubMed  Google Scholar 

  • Van Hartingsveldt W., van Zeijl C.M., Harteveld G.M., Gouka R.J., Suykerbuyk M.E., Luiten R.G., van Paridon P.A., Selten G.C., Veenstra A.E., van Gorcom R.F.: Cloning, characterization and overexpression of the phytase-encoding gene (phyA) ofAspergillus niger.Gene127, 87–94 (1993).

    Article  PubMed  Google Scholar 

  • Van den Hondel C.A.M.J.J., Punt P.J., van Gorcom R.F.M.: Strategies for the over-production of fungal proteins inAspergillus.Prog. Biotechnol.9, 287–290 (1994).

    Google Scholar 

  • Van der Kaay J., Van der Haastert P.J.M.: Stereospecificity of inositol hexakisphosphate dephosphorylation byParamecium phytase.Biochem. J.312, 907–910 (1995).

    PubMed  Google Scholar 

  • Verwoerd T.C., van Paridon P.A., van Ooyen A.J., van Lent J.W., Hockema A., Pen J.: Stable accumulation ofAspergillus niger phytase in transgenic tobacco leaves.Plant Physiol.109, 1199–1205 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Volfová O., Dvořáková J., Hanzlíková A., Jandera A.: Phytase fromAspergillus niger.Folia Microbiol.39, 481–484 (1994).

    Article  Google Scholar 

  • Volfová O., Dvořáková J., Sobotka M., Zobač P., Kumprecht I.: Industrial production of enzymatic preparation phytase by fermentation.Pat. CZ 282 772 (1997).

  • Wakamoto Pharmaceuticals: Production of Ca immobilizing substance.Japan Pat. 192 839 (1988).

  • Whitaker J.R.: New and future uses of enzymes in food processing.Food Biotechnol.4, 669–697 (1990).

    Article  CAS  Google Scholar 

  • Whitelam G.C.: The production of recombinant proteins in plants.J. Sci. Food Agric.68, 1–9 (1995).

    Article  CAS  Google Scholar 

  • Williams S.A., Culp J.S., Butler L.G.: The relationship of alkaline phosphatase, CTPase and phytase.Arch. Biochem. Biophys.241, 10–13 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Williams P.J., Taylor T.G.: A comparative study of phytate hydrolysis in the gastrointestinal tract of the golden hamster (Mesocricetus auratus) and the laboratory rat.Brit. J. Nutr.54, 429–35 (1985).

    Article  PubMed  CAS  Google Scholar 

  • Yamada K., Minoda Y., Yamamoto S.: Phytase fromAspergillus terreus. I. Production, purification and some general properties of the enzyme.Agric. Biol. Chem.32, 1275–1282 (1968).

    CAS  Google Scholar 

  • Yamamoto S., Minoda Y., Yamada K.: Chemical and physicochemical properties of phytase fromAspergillus terreus.Agric. Biol. Chem.36, 2097–2103 (1972).

    CAS  Google Scholar 

  • Yang W.J., Matsuda Y., Sano S., Masutani H., Nakagava H.: Purification and characterization of phytase from rat intestinal mucosa.Biochim. Biophys. Acta1075, 95–82 (1991a).

    Google Scholar 

  • Yang W.J., Matsuda Y., Inomata M., Nakagava H.: Developmental and dietary induction of 90 kDa subunits of rat intestinal phytase.Biochim. Biophys. Acta1075, 83–87 (1991b).

    PubMed  CAS  Google Scholar 

  • Yi Z., Kornegay E.T., Denbow D.M.: Supplemental microbial phytase improves zinc utilization in broilers.Poultry Sci.75, 540–546 (1996).

    CAS  Google Scholar 

  • Yi Z., Kornegay E.T., Ravindran V., Denbow D.M.: Improving phytate phosphorus availability in corn and soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency values for phytase.Poultry Sci.75, 240–249 (1996).

    CAS  Google Scholar 

  • Yi Z., Kornegay E.T., Ravindran V., Lindemann M.D., Wilson J.H.: Effectiveness of Natuphos phytase in improving the bioavailabilities of phosphorus and other nutrients in soybean meal-based semipurified diets for young pigs.J. Animal. Sci.74, 1601–1611 (1996).

    CAS  Google Scholar 

  • Young L.G., Leunissen M., Atkinson J.L.: Addition of microbial phytase to diets of young pigs.J. Animal Sci.71, 2147–2150 (1993).

    CAS  Google Scholar 

  • Zenkoku Nogyo Kyodo Ass.: A neutral phytase.Japan Pat. 06 038 745 (1994).

  • Zobač P., Kumprecht L., Volfová O., Šimeček K., Dvořáková J.: The effect of microbial phytase applied in feed mixtures on phosphorus and calcium utilization in chicken broilers.Živočišná výroba42, 13–22 (1997).

    Google Scholar 

  • Zyla K.: Mould phytases and their application in the food industry.World J. Microbiol. Biotechnol.8, 4667–4672 (1992).

    Google Scholar 

  • Zyla K., Koreleski J.:In vitro andin vivo dephosphorylation of rapeseed meal by means of phytate degrading enzymes derived fromAspergillus niger.J. Sci. Food Agric.61, 1–6 (1993).

    Article  CAS  Google Scholar 

  • Zyla K., Ledoux D.R., Garcia A., Veum T.L.: Anin vitro procedure for studying enzymic dephosphorylation of phytate in maize-soyabean feeds for turkey poults.Brit. J. Nutr.74, 3–17 (1995).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dvořáková, J. Phytase: Sources, preparation and exploitation. Folia Microbiol 43, 323–338 (1998). https://doi.org/10.1007/BF02818571

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02818571

Keywords

Navigation