Skip to main content
Log in

Expression of mitochondrial malate dehydrogenase in Escherichia coli improves phosphate solubilization

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Penicillium oxalicum C2 was isolated from the rhizosphere of Mexican stonecrop based on its high level of tricalcium phosphate solubilizing activity. A full-length gene encoding mitochondrial malate dehydrogenase (mMDH) was cloned from P. oxalicum C2 by RT-PCR and RACE techniques. The cDNA was 1,284 bp in length, with a complete open reading frame of 1,023 bp encoding a protein of 340 amino acids with a predicted molecular mass of 35.7 kDa. The predicted amino acid sequence shared high identity with mMDHs from other organisms. Escherichia coli strain BL21(DE3) transformed with the P. oxalicum C2 mMDH gene showed an increase in MDH activity of about 5-fold compared to non-transformed cell as measured in cell extracts. It also secreted more malate, lactate, acetate, citrate, oxalate and produced higher clearing halos when grown in plates with tricalcium phosphate as the sole source of phosphate. These results showed that expression of the P. oxalicum C2 mMDH gene in E. coli could enhance organic acid secretion and improve the phosphate solubilizing ability of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aranda A, Maugeri D, Uttaro AD, Opperdoes F, Cazzulo JJ, Nowicki C (2006) The malate dehydrogenase isoforms from Trypanosoma brucei: subcellular localization and differential expression in bloodstream and procyclic forms. Int J Parasitol 36:295–307

    Article  PubMed  CAS  Google Scholar 

  • Aspila KL, Agemian H, Chau ASY (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197

    Article  PubMed  CAS  Google Scholar 

  • Bolan NS, Naidu R, Mahimairaja S, Baskaran S (1994) Influence of low molecular-weight organic acids on the solubilization of phosphates. Biol Fertil Soils 18:311–319

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chan M, Sim TS (2004) Functional characterization of an alternative [lactate dehydrogenase-like] malate dehydrogenase in Plasmodium falciparum. Parasitol Res 92:43–47

    Article  PubMed  CAS  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai W-A, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Article  Google Scholar 

  • Chuang C, Kuo Y, Chao C, Chao W (2007) Solubilization of inorganic phosphates and plant growth promotion by Aspergillus niger. Biol Fertil Soils 43:575–584

    Article  CAS  Google Scholar 

  • Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458

    Google Scholar 

  • Duff RB, Webley DM, Scott R (1963) Solubilization of minerals and related materials by 2-ketogluconic acid-producing bacteria. Soil Sci 95:105–114

    Article  CAS  Google Scholar 

  • Eprintsev AT, Falaleeva MI, Parfyonova NV (2005) Malate dehydrogenase from the thermophilic bacterium Vulcanithermus medioatlanticus. Biochemistry 70:1027–1030

    PubMed  CAS  Google Scholar 

  • Gadagi RS, Shin WS, Sa TM (2003) Malic acid mediated aluminum phosphate solubilization by Penicillium oxalicum CBPS-3F-Tsa isolated from Korean paddy rhizosphere soil. In: Velazquez E, Rodriguez-Barrueco C (eds) First International Meeting on Microbial Phosphate Solubilization (Developments in Plant and Soil Sciences), 16–19 July 2002, Salamanca, Spain. Springer, Berlin, pp 285–290

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang SG, Nielsen CB, Butler J, Endrizzi M, Qui DY, Ianakiev P, Pedersen DB, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stabge-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li WX, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    Article  PubMed  CAS  Google Scholar 

  • Gaur AC, Madan M, Ostwal KP (1973) Solubilization of phosphatic compounds by native micro flora of rock phosphates. Indian J Expt Biol 11:427–429

    Google Scholar 

  • Gavel Y, Heijne Gv (1990) Cleavage-site motifs in mitochondrial targeting peptides. Protein Eng 4:33–37

    Article  PubMed  CAS  Google Scholar 

  • Goenadi DH, Siswanto SY (2000) Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci Soc Am J 64:927–932

    CAS  Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193

    Article  Google Scholar 

  • Goward CR, Nicholls DJ (1994) Malate dehydrogenase: a model for structure, evolution, and catalysis. Protein Sci 3:1883–1888

    Article  PubMed  CAS  Google Scholar 

  • Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Suh JS, Kim KY (2003) 2-Ketogluconic acid production and phosphate solubilization by Enterobacter intermedium. Curr Microbiol 47:87–92

    Article  PubMed  CAS  Google Scholar 

  • Illmer P, Schinner F (1995) Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol Biochem 27:257–263

    Article  CAS  Google Scholar 

  • Iwase K (1992) Gluconic acid synthesis by the ectomycorrhizal fungus Tricholoma robustum. Can J Bot 70:84–88

    Article  CAS  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2006) Fungal solubilization of rock phosphate is enhanced by forming fungal–rhizobial biofilms. Soil Biol Biochem 38:405–408

    Article  CAS  Google Scholar 

  • Karina EJ, Trípodi FEP (2003) Purification and characterization of an NAD-dependent malate dehydrogenase from leaves of the crassulacean acid metabolism plant Aptenia cordifolia. Plant Physiol Biochem 41:97–105

    Article  Google Scholar 

  • Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1:48–58

    Google Scholar 

  • Kim CH, Han SH, Kim KY, Cho BH, Kim YH, Koo BS, Kim YC (2003) Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Curr Microbiol 47:457–461

    Google Scholar 

  • Kirby RR (2000) Cloning and primary structure of putative cytosolic and mitochondrial malate dehydrogenase from the mollusc Nucella lapillus (L.). Gene 245:81–88

    Article  PubMed  CAS  Google Scholar 

  • Laheurte F, Berthelin J (1988) Effect of a phosphate solubilizing bacteria on maize growth and root exudation over four levels of labile phosphorus. Plant Soil 105:11–17

    Article  CAS  Google Scholar 

  • Lin Q, Wang H, Zhao R, Zhao Z (2001) Capacity of some bacteria and fungi in dissolving phosphate rock. Microbiology 28:26–30

    Google Scholar 

  • López-Calcagno PE, Moreno J, Cedeño L, Labrador L, Concepción JL, Avilán L (2009) Cloning, expression and biochemical characterization of mitochondrial and cytosolic malate dehydrogenase from Phytophthora infestans. Mycol Res 113:771–181

    Google Scholar 

  • Ma H, Kubicek CP, Röhr M (1981) Malate dehydrogenase isoenzymes in Aspergillus niger. FEMS Microbiol Lett 12:147–151

    Article  CAS  Google Scholar 

  • Mahmoud YAG, Abuelsouod SM, Niehaus WG (1995) Purification and characterization of malate dehydrogenase from Cryptococcus neoformans. Arch Biochem Biophys 167:1–8

    Google Scholar 

  • Maloney AP, Callan SM, Murray PG, Tuohy MG (2004) Mitochondrial malate dehydrogenase from the thermophilic, filamentous fungus Talaromyces emersonii. Purification of the native enzyme, cloning and overexpression of the corresponding gene. Eur J Biochem 271:3115–3126

    Article  PubMed  CAS  Google Scholar 

  • McComb RB, Bond LW, Burnett RW, Keech RC, Bowers GN Jr (1976) Determination of the molar absorptivity of NADH. Clin Chem 22:141–150

    PubMed  CAS  Google Scholar 

  • Molla MAZ, Chowdhury AA, Islam A, Hoque S (1984) Microbial mineralization of organic phosphate in soil. Plant Soil 78:393–399

    Article  CAS  Google Scholar 

  • Narsian V, Patel HH (2000) Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol Biochem 32:559–565

    Article  CAS  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Berriman M, Abe K, Archer DB, Bermejo C, Bennett J, Bowyer P, Chen D, Collins M, Coulsen R, Davies R, Dyer PS, Farman M, Fedorova N, Fedorova N, Feldblyum TV, Fischer R, Fosker N, Fraser A, Garcia JL, Garcia MJ, Goble A, Goldman GH, Gomi K, Griffith-Jones S, Gwilliam R, Haas B, Haas H, Harris D, Horiuchi H, Huang J, Humphray S, Jimenez J, Keller N, Khouri H, Kitamoto K, Kobayashi T, Konzack S, Kulkarni R, Kumagai T, Lafton A, Latge JP, Li WX, Lord A, Majoros WH, May GS, Miller BL, Mohamoud Y, Molina M, Monod M, Mouyna I, Mulligan S, Murphy L, O’Neil S, Paulsen I, Penalva MA, Pertea M, Price C, Pritchard BL, Quail MA, Rabbinowitsch E, Rawlins N, Rajandream MA, Reichard U, Renauld H, Robson GD, de Cordoba SR, Rodriguez-Pena JM, Ronning CM, Rutter S, Salzberg SL, Sanchez M, Sanchez-Ferrero JC, Saunders D, Seeger K, Squares R, Squares S, Takeuchi M, Tekaia F, Turner G, de Aldana CRV, Weidman J, White O, Woodward J, Yu JH, Fraser C, Galagan JE, Asai K, Machida M, Hall N, Barrell B, Denning DW (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    Article  PubMed  CAS  Google Scholar 

  • Patel DK, Archana G, Kumar GN (2008) Variation in the nature of organic acid secretion and mineral phosphate solubilization by Citrobacter sp. DHRSS in the presence of different sugars. Curr Microbiol 56:168–174

    Article  PubMed  CAS  Google Scholar 

  • Peixa A, Rivas-Boyerob AA, Mateosb PF, Rodriguez-Barruecoa C, MartõÂnez-Molinab E, Velazquezb E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  Google Scholar 

  • Puente ME, Bashan Y, Li CY, Lebsky VK (2004) Microbial populations and activities in the rhizoplane of rock-weathering desert plants. I. Root colonization and weathering of igneous rocks. Plant Biol 6:629–642

    Article  PubMed  CAS  Google Scholar 

  • Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresour Technol 84:187–189

    Article  PubMed  CAS  Google Scholar 

  • Reyes I, Baziramakenga R, Bernier L, Antoun H (2001) Solubilization of phosphate rocks and minerals by a wild-type strain and two UV-induced mutants of Penicillium rugulosum. Soil Biol Biochem 33:1741–1747

    Article  CAS  Google Scholar 

  • Surange SM (1985) Comparative phosphate solubilizing capacity of some soil fungi. Curr Sci 54:1134–1135

    CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844

    Article  PubMed  CAS  Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    PubMed  CAS  Google Scholar 

  • van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJM, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WHM, Joardar V, Kiel JAKW, Kovalchuk A, Martin JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NNME, Veenhuis M, von Dohren H, Wagner C, Wortman J, Bovenberg RAL (2008) Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 26:1161–1168

    Article  PubMed  CAS  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  PubMed  CAS  Google Scholar 

  • Vassilev N, Fenice M, Federici F (1996) Rock phosphate solubilization with gluconic acid produced by immobilized Penicillium variabile P16. Biotechnol Tech 10:585–588

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols a guide to methods and applications. Academic, New York, pp 315–322

  • Whitelaw MA, Harden TJ, Helyar KR (1999) Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol Biochem 31:655–665

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the State Major Special Science and Technology of Transgene, Development of Transgenic Soybean New Germplasm with High Phosphate Use Efficiency (no. 2009ZX08004-005B-3). We are grateful to Dr. Alan K. Chang from Dalian University of Technology for his contribution to the revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaorong Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, J., Gao, X., Dong, Z. et al. Expression of mitochondrial malate dehydrogenase in Escherichia coli improves phosphate solubilization. Ann Microbiol 62, 607–614 (2012). https://doi.org/10.1007/s13213-011-0297-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-011-0297-3

Keywords

Navigation