Skip to main content
Log in

Reductive transformation of parathion and methyl parathion by Bacillus sp.

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Based on the results of phenotypic features, phylogenetic similarity of 16S rRNA gene sequences and BIOLOG test, a soil bacterium was identified as Bacillus sp. DM-1. Using either growing cells or a cell-free extract, it transformed parathion and methyl parathion to amino derivatives by reducing the nitro group. Pesticide transformation by a cell-free extract was specifically inhibited by three nitroreductase inhibitors, indicating the presence of nitroreductase activity. The nitroreductase activity was NAD(P)H-dependent, O2-insensitive, and exhibited the substrate specificity for parathion and methyl parathion. Reductive transformation significantly decreased the toxicity of pesticides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barton JW, Kuritz T, O’Connor LE, Ma CY, Maskarinec MP, Davison BH (2004) Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol 65:330–335

    Article  PubMed  CAS  Google Scholar 

  • Bossche HV, Koymans L (1998) Cytochrome P450 in fungi. Mycoses 41:32–38

    Article  Google Scholar 

  • Bryant DW, McCalla DR, Leeksma M, Laneuville P (1981) Type I nitroreductases of Escherichia coli. Can J Microbiol 27:81–86

    Article  PubMed  CAS  Google Scholar 

  • Chaudhry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293

    PubMed  CAS  Google Scholar 

  • Esteve-Núňez A, Caballero A, Ramos JL (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  PubMed  Google Scholar 

  • Goronzy T, Drzyzga O, Kahl MW, Bruns-Nagel D, Breitung J, von Loew E, Blotevogel KH (1994) Microbial degradation of explosives and related compounds. Crit Rev Microbiol 20:265–284

    Google Scholar 

  • Hawkins KI, Knittle CE (1972) Comparison of acetylcholinesterase determinations by the Michel and Ellman methods. Anal Chem 44:416–417

    Article  PubMed  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PH, Staley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams and Wilkins, Baltimore, MD

  • Koder RL, Miller AF (1998) Steady-state kinetic mechanism, stereospecifity, substrate and inhibitor specifity of Enterobacter cloacae nitroreductase. Biochim Biophys Acta 1387:395–405

    PubMed  CAS  Google Scholar 

  • Munnecke DM, Hsieh DPH (1976) Pathway of microbial metabolism of parathion. Appl Environ Microbiol 31:63–69

    PubMed  CAS  Google Scholar 

  • Rani NL, Lalithakumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 40:1000–1006

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg A, Alexander M (1979) Microbial cleavage of various organophosphorus insecticides. Appl Environ Microbiol 37:886–891

    PubMed  CAS  Google Scholar 

  • Serdar CM, Gibson DT, Munnecke DM, Lancaster JH (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249

    PubMed  CAS  Google Scholar 

  • Sethunathan N, Yoshida T (1973) Parathion degradation in submerged rice soils in the Philippines. J Agric Food Chem 21:504–506

    Article  PubMed  CAS  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  PubMed  CAS  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Annu Rev Microbiol 49:523–555

    Article  PubMed  CAS  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  • Zenno S, Kobori T, Tanokura M, Saigo K (1998) Purification and characterization of NfrA1, a Bacillus subtilis nitro/flavin reductase capable interacting with the bacterial luciferase. Biosci Biotechnol Biochem 62:1978–1987

    Article  PubMed  CAS  Google Scholar 

  • Zenno S, Koike H, Kumar AK, Jayaraman R, Tanokura M, Saigo K (1996a) Biochemical characterization of NfsA, a Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi, flavin oxidoreductase. J Bacteriol 178:4508–4514

    CAS  Google Scholar 

  • Zenno S, Koike H, Tanokura M, Saigo K (1996b) Gene cloning, purification, and characterization of NfsB, a minor oxygen-insensitive nitroreductase from Escherichia coli, similar in biochemical properties to FRaseI, the major flavin reductase in Vibrio fischeri. J Biochem 120:736–744

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 863 Hi-Tech Research and Development Program of the People’s Republic of China (No. 2005AA601020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanling Qiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Dong, M., Yuan, Y. et al. Reductive transformation of parathion and methyl parathion by Bacillus sp.. Biotechnol Lett 29, 487–493 (2007). https://doi.org/10.1007/s10529-006-9264-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-006-9264-7

Keywords

Navigation