Skip to main content
Log in

Solid-state protease production using anchovy waste meal by moderate halophile Serratia proteamaculans AP-CMST isolated from fish intestine

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The possibility of utilising anchovy waste meal as a substrate for protease production by the fish gut isolate Serratia proteamaculans AP-CMST was assessed through solid-state fermentation. A time course for protease production revealed 72 h to be the optimum duration for higher production (146.24 U/g). The most suitable pH, temperature and moisture level observed for higher protease production were pH 7 (123.5 U/g), 30°C (97.22 U/g) and 75% (126.7 U/g), respectively. Protease production by S. proteamaculans AP-CMST was high in medium with added xylose (198.21 U/g), peptone (118.42 U/g), Triton X-100 (152.56 U/g) and manganese sulphate (178.33 U/g) when compared to other tested medium components. The halotolerancy of S. proteamaculans AP-CMST for protease production was 4% sodium chloride (155.65 U/g). Enzyme recovery from fermented anchovy waste meal was greatest (130.52 U/g) when 10% ethyl acetate was used as the extractant, and the optimum time range for extraction was 90–120 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abd Rahman RNZR, Geoka LP, Basrib M, Salleha AB (2005) An organic solvent-tolerant protease from Pseudomonas aeruginosa strain K. Nutritional factors affecting protease production. Enzyme Microb Technol 36:749–757

    Article  Google Scholar 

  • Agrawal D, Patidar P, Banerjee T, Patil S (2005) Alkaline protease production by a soil isolate of Beauveria felina under SSF condition: parameter optimization and application to soy protein hydrolysis. Process Biochem 40:1131–1136

    Article  CAS  Google Scholar 

  • Alberts D, Deive FJ, Sanroman A, Longo MA (2003) Effect of lipids and surfactants on extracellular lipase production by Yarrowia lipolytica. Chem Technol Biotechnol 78:1166–1170

    Article  Google Scholar 

  • Anandan D, Marmer WN, Dudley RL (2007) Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamari. Ind Microbiol Biotechnol 34:339–347

    Article  CAS  Google Scholar 

  • Bimbo AP (1990) Fish meal and oil. In: Martin RE, Flick GJ (eds) The seafood industry. Van Nostrand Reinhold, New York, pp 325–350

    Chapter  Google Scholar 

  • Bogar B, Szakacs G, Pandey A, Sabu A, Linden JC (2003) Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnol Prog 19:312–319

    Article  PubMed  CAS  Google Scholar 

  • Chutmanop J, Chuichulcherm S, Chisti Y, Srinophakun P (2008) Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. Chem Technol Biotechnol 83(7):1012–1018

    Article  CAS  Google Scholar 

  • Ellouz YT, Bayoudh A, Kammoun S, Gharsallah N, Nasri M (2001) Production of protease by Bacillus subtilis grown on Sardinella heads and viscera flour. Bioresour Technol 80:40–51

    Article  Google Scholar 

  • Ellouz YT, Ghorbel B, Souissi N, Kammoun S, Nasri M (2003) Biosynthesis of protease by Pseudomonas aeruginosa MN7 grown on fish substrate. World J Microbiol Biotechnol 19:41–45

    Article  Google Scholar 

  • El-Shora HM, Metwally MAA (2008) Production, purification and characterization of proteases from whey by some fungi. Ann Microbiol 58(3):495–502

    Article  CAS  Google Scholar 

  • Fukushima D (1983) Fermented soy foods in the United States. In: Irwin BJ (ed) Soybean research in China and the United States. Kikkoman Foods. Walworth, WI

    Google Scholar 

  • Ganesh Kumar C, Parrack P (2003) Arrowroot (Marantha arundinacea) starch as a new low-cost substrate for alkaline protease production. World J Microbiol Biotechnol 19:757–762

    Article  Google Scholar 

  • Goes AP, Sheppard JD (1999) Effect of surfactants on α-amylase production in a solid state fermentation process. Chem Technol Biotechnol 74:709–712

    Article  CAS  Google Scholar 

  • Joo HS, Chang CS (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem 40:1263–1270

    Article  CAS  Google Scholar 

  • Joo HS, Kumar CG, Park GC, Paik SR, Chang CS (2003) Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. Appl Microbiol 95:267–272

    Article  CAS  Google Scholar 

  • Kaminishi H, Hamatake H, Cho T, Tamaki T, Suenaga N, Fujii T, Hagihara Y, Maeda H (1994) Activation of blood clotting factors by microbial proteinases. FEMS Microbiol Lett 121:327–332

    Article  PubMed  CAS  Google Scholar 

  • Kratzer FH, Latshaw JD, Leeson SL, Moran ET, Parsons KM, Sell JL, Waldrop PW (1994) Nutrient requirements of poultry: 9th revised edn. National Academy Press, Washington, DC, pp 61–79

  • Mahanta N, Gupta A, Khare SK (2008) Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. Bioresour Technol 99:1729–1735

    Article  PubMed  CAS  Google Scholar 

  • Nascimento WCA, Martins MLL (2004) Production and properties of an extracellular protease from thermophilic Bacillus sp. Braz J Microbiol 35:91–96

    Article  Google Scholar 

  • Nascimento WCA, Martins MLL (2006) Studies on the stability of protease from Bacillus sp. and its compatibility with commercial detergent. Braz J Microbiol 37:307–311

    Article  Google Scholar 

  • Okamoto M, Yonejima Y, Tsujimoto Y, Suzuki Y, Watanabe K (2001) A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1. Appl Microbiol Biotechnol 57:103–108

    Article  PubMed  CAS  Google Scholar 

  • Patel AK, Deshattiwar MK, Chaudhari BL, Chincholkar SB (2009) Production, purification and chemical characterization of the catecholate siderophore from potent probiotic strains of Bacillus spp. Bioresour Technol 100:368–373

    Article  PubMed  CAS  Google Scholar 

  • Patel RK, Dodia MS, Joshi RH, Singh SP (2006) Production of extracellular halo-alkaline protease from a newly isolated haloalkaliphiilic Bacillus sp. isolated from seawater in Western India. World. J Microbiol Biotechnol 22(4):375–382

    Article  CAS  Google Scholar 

  • Patke D, Dey S (1998) Proteolytic activity from a thermophilic Streptomyces megasporus strain SDP4. Lett Appl Microbiol 26:171–174

    Article  CAS  Google Scholar 

  • Prakasham RS, Subba Rao Ch, Sarma PN (2006) Green gram husk-an inexpensive substrate for alkaline protease production by Bacillus sp. in solid-state fermentation. Bioresour Technol 97:449–1454

    Article  Google Scholar 

  • Rainey FA, Fritze D, Stackebrandt E (1994) The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiol Lett 115:205–212

    Article  PubMed  CAS  Google Scholar 

  • Samarntarn W, Cheevadhanarak S, Tanticharoen M (1999) Production of alkaline protease by a genetically engineered Aspergillus oryzae U1521. J Gen Appl Microbiol 45:99–103

    Article  PubMed  CAS  Google Scholar 

  • Soares VF, Castilho LR, Bon EPS, Freire DMG (2005) High-yield Bacillus subtilis protease production by solid-state fermentation. Appl Biochem Biotechnol 121:311–319

    Article  PubMed  Google Scholar 

  • Setyorini E, Takenaka S, Murakami S, Aoki K (2006) Purification and characterization of two novel halotolerant extracellular proteases from Bacillus subtilis strain FP 133. Biosci Biotechnol Biochem 70(2):433–440

    Article  PubMed  CAS  Google Scholar 

  • Sunish Kumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. Appl Microbiol 98:145–154

    Article  Google Scholar 

  • Takami H, Akiba T, Horikaoshi K (1989) Production of extremely thermostable alkaline protease from Bacillus Sp. No. AH-101. Appl Microbiol Biotechnol 30:120–124

    Article  CAS  Google Scholar 

  • Tunga R, Banerjee R, Bhattacharyya BC (1998) Optimizing some factors affecting protease production under solid state fermentation. Bioprocess Eng 19:187–190

    Article  CAS  Google Scholar 

  • Turan H, Kaya Y, Erkoyuncu U (2007) Protein and lipid content and fatty acid composition of anchovy meal produced in turkey. Turk J Vet Anim Sci 31(2):113–117

    CAS  Google Scholar 

  • Vidyasagar M, Prakash S, Jayalakshmi SK, Sreeramulu K (2007) Optimization of culture conditions for the production of halothermophilic protease from halophilic bacterium Chromohalobacter sp. TVSP101. World J Microbiol Biotechnol 23:655–662

    Article  CAS  Google Scholar 

  • Zambare VP, Nilegaonkar SS, Kanekar PP (2007) Production of an alkaline protease by Bacillus cereus MCM B-326 and its application as a dehairing agent. World J Microbiol Biotechnol 23:1569–1574

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial assistance extended in the form of Senior Research Fellowship by the Council of Scientific and Industrial Research (CSIR), Ministry of Human Resource Development, Government of India to P.E. Also we thank Dr. Georgina Sandoval (Industrial Biotechnology Department, CIATEJ, Guadalajara, Mexico) for her valuable suggestions, support and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunachalam Palavesam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esakkiraj, P., Sankaralingam, S., Usha, R. et al. Solid-state protease production using anchovy waste meal by moderate halophile Serratia proteamaculans AP-CMST isolated from fish intestine. Ann Microbiol 61, 749–755 (2011). https://doi.org/10.1007/s13213-010-0191-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-010-0191-4

Keywords

Navigation