Skip to main content
Log in

Recent Applications of Point-of-Care Devices for Glucose Detection on the Basis of Stimuli-Responsive Volume Phase Transition of Hydrogel

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Diabetes is a serious global disease that threatens more than 400 million people’s health. Therefore, timely detection of body’s glucose level becomes extremely important for control, diagnosis and treatment of diabetes. Based on the feature of stimuli-responsive volume phase transition of hydrogel materials, this review will provide a systematic summary of glucose detection devices in recent years, including hydrogel preparation methods based on glucose-sensitive pattern, detection mechanisms based on signal transduction, current and emerging devices based on different body fluids and discuss the challenge, prospect the future development trend in the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. World Health Organization (WHO): Global Report on Diabetes 2016. WHO, Geneva (2016)

    Google Scholar 

  2. van Enter, B.J., von Hauff, E.: Challenges and perspectives in continuous glucose monitoring. Chem. Commun. (Camb.) 54, 5032–5045 (2018)

    Article  Google Scholar 

  3. Liu, S., Su, W., Ding, X.: A review on microfluidic paper-based analytical devices for glucose detection. Sensors (Basel) 16, 2086 (2016)

    Article  Google Scholar 

  4. Tang, W., Chen, C.: Hydrogel-based colloidal photonic crystal devices for glucose sensing. Polymers (Basel) 12, 625 (2020)

    Article  CAS  Google Scholar 

  5. Wichterle, O., Lim, D.: Hydrophilic GELS FOR BIOLOGICAL USE. Nature 185, 117–118 (1960)

    Article  Google Scholar 

  6. Ahmed, E.M.: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6, 105–121 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Jung, I.Y., et al.: Hydrogel based biosensors for in vitro diagnostics of biochemicals, proteins, and genes. Adv. Healthc. Mater. 6, 1601475 (2017)

    Article  Google Scholar 

  8. Lim, H.L., Hwang, Y., Kar, M., Varghese, S.: Smart hydrogels as functional biomimetic systems. Biomater. Sci. 2, 603–618 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. Haq, M.A., Su, Y., Wang, D.: Mechanical properties of PNIPAM based hydrogels: a review. Mater. Sci .Eng. C Mater. Biol. Appl. 70, 842–855 (2017)

    Article  PubMed  Google Scholar 

  10. Guiseppi-Elie, A.: Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31, 2701–2716 (2010)

    Article  CAS  PubMed  Google Scholar 

  11. George, S.M., Tandon, S., Kandasubramanian, B.: Advancements in hydrogel-functionalized immunosensing platforms. ACS Omega 5, 2060–2068 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dhanjai, et al.: Polymer hydrogel interfaces in electrochemical sensing strategies: a review. TrAC 118, 488–501 (2019)

    CAS  Google Scholar 

  13. Chen, C., et al.: Current and emerging technology for continuous glucose monitoring. Sensors (Basel) 17, 182 (2017)

    Article  Google Scholar 

  14. Deligkaris, K., Tadele, T.S., Olthuis, W., van den Berg, A.: Hydrogel-based devices for biomedical applications. Sens. Actuator B Chem 147, 765–774 (2010)

    Article  CAS  Google Scholar 

  15. Kumar, A., Han, S.S.: PVA-based hydrogels for tissue engineering: a review. Int. J. Polym. Mater. Process. 66, 159–182 (2016)

    Article  Google Scholar 

  16. Yang, J.M., Olanrele, O.S., Zhang, X., Hsu, C.C.: Fabrication of hydrogel materials for biomedical applications. Adv. Exp. Med. Biol. 1077, 197–224 (2018)

    Article  CAS  PubMed  Google Scholar 

  17. Elsayed, M.M.: Hydrogel preparation technologies: relevance kinetics, thermodynamics and scaling up aspects. J. Polym. Environ. 27, 871–891 (2019)

    Article  CAS  Google Scholar 

  18. Choi, E., et al.: Label-free specific detection of immunoglobulin G antibody using nanoporous hydrogel photonic crystals. Sens. Actuator B Chem. 180, 107–113 (2013)

    Article  CAS  Google Scholar 

  19. Munir, S., Hussain, S., Park, S.Y.: Patterned photonic array based on an intertwined polymer network functionalized with a nonenzymatic moiety for the visual detection of glucose. ACS Appl. Mater. Interfaces 11, 37434–37441 (2019)

    Article  CAS  PubMed  Google Scholar 

  20. Kim, Y., Namgung, H., Lee, T.S.: Synthesis of a glucose oxidase-conjugated, polyacrylamide-based, fluorescent hydrogel for a reusable, ratiometric glucose sensor. Polym. Chem. 7, 6655–6661 (2016)

    Article  CAS  Google Scholar 

  21. MacConaghy, K.I., Chadly, D.M., Stoykovich, M.P., Kaar, J.L.: Optically diffracting hydrogels for screening kinase activity in vitro and in cell lysate: impact of material and solution properties. Anal. Chem. 87, 3467–3475 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. Kost, J., Horbett, T.A., Ratner, B.D., Singh, M.: Glucose-sensitive membranes containing glucose-oxidase—activity, swelling, and permeability studies. J. Biomed. Mater. Res. 19, 1117–1133 (1985)

    Article  CAS  PubMed  Google Scholar 

  23. Shen, M., Rusling, J., Dixit, C.K.: Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods 116, 95–111 (2017)

    Article  CAS  PubMed  Google Scholar 

  24. Smith, S.K., et al.: Quantitative comparison of enzyme immobilization strategies for glucose biosensing in real-time using fast-scan cyclic voltammetry coupled with carbon-fiber microelectrodes. ChemPhysChem 19, 1197–1204 (2018)

    Article  CAS  PubMed  Google Scholar 

  25. Al-Sagur, H., et al.: Amperometric glucose biosensing performance of a novel graphene nanoplatelets-iron phthalocyanine incorporated conducting hydrogel. Biosens. Bioelectron. 139, 111323 (2019)

    Article  CAS  PubMed  Google Scholar 

  26. Riccardi, C.M., et al.: Covalent interlocking of glucose oxidase and peroxidase in the voids of paper: enzyme-polymer “spider webs.” Chem. Commun. (Camb.) 52, 2593–2596 (2016)

    Article  CAS  Google Scholar 

  27. Li, W., et al.: Porous structured cellulose microsphere acts as biosensor for glucose detection with “signal-and-color” output. Carbohydr. Polym. 205, 295–301 (2019)

    Article  CAS  PubMed  Google Scholar 

  28. Schmidt, U., Guenther, M., Gerlach, G.: Biochemical piezoresistive sensors based on pH- and glucose-sensitive hydrogels for medical applications. Curr. Dir. Biomed. Eng. 2, 117–121 (2016)

    Article  Google Scholar 

  29. Benson, K., Ghimire, A., Pattammattel, A., Kumar, C.V.: Protein biophosphors: biodegradable, multifunctional, protein-based hydrogel for white emission, sensing, and pH detection. Adv. Funct. Mater. 27, 1702955 (2017)

    Article  Google Scholar 

  30. Al-Sagur, H., et al.: A novel glucose sensor using lutetium phthalocyanine as redox mediator in reduced graphene oxide conducting polymer multifunctional hydrogel. Biosens. Bioelectron 92, 638–645 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. Dilusha Cooray, M.C., et al.: Efficient enzymatic oxidation of glucose mediated by ferrocene covalently attached to polyethylenimine stabilized gold nanoparticles. Electroanalysis 28, 2728–2736 (2016)

    Article  CAS  Google Scholar 

  32. Kojima, J., et al.: An integrated glucose sensor with an all-solid-state sodium ion-selective electrode for a minimally invasive glucose monitoring system. Micromachines 6, 831–841 (2015)

    Article  Google Scholar 

  33. Comba, F.N., Romero, M.R., Garay, F.S., Baruzzi, A.M.: Mucin and carbon nanotube-based biosensor for detection of glucose in human plasma. Anal. Biochem. 550, 34–40 (2018)

    Article  CAS  PubMed  Google Scholar 

  34. Lopez-Gallego, F., Guisan, J.M., Betancor, L.: Glutaraldehyde-mediated protein immobilization. Clifton, N.J. 1051, 33–41 (2013)

    CAS  Google Scholar 

  35. Xie, X., et al.: Microfluidic fabrication of colloidal nanomaterials-encapsulated microcapsules for biomolecular sensing. Nano Lett. 17, 2015–2020 (2017)

    Article  CAS  PubMed  Google Scholar 

  36. Huang, J., et al.: Complex of hydrogel with magnetic immobilized GOD for temperature controlling fiber optic glucose sensor. Biochem. Eng. J. 114, 262–267 (2016)

    Article  CAS  Google Scholar 

  37. Huang, J., et al.: Temperature controlling fiber optic glucose sensor based on hydrogel-immobilized GOD complex. Sens. Actuator B Chem. 237, 24–29 (2016)

    Article  CAS  Google Scholar 

  38. Huang, J., et al.: A temperature-triggered fiber optic biosensor based on hydrogel-magnetic immobilized enzyme complex for sequential determination of cholesterol and glucose. Biochem. Eng. J. 125, 123–128 (2017)

    Article  CAS  Google Scholar 

  39. Lin, H., Li, M., Ding, L., Huang, J.: A fiber optic biosensor based on hydrogel-immobilized enzyme complex for continuous determination of cholesterol and glucose. Appl. Biochem. Biotechnol. 187, 1569–1580 (2019)

    Article  CAS  PubMed  Google Scholar 

  40. Park, H.I., Park, S.Y.: Smart fluorescent hydrogel glucose biosensing microdroplets with dual-mode fluorescence quenching and size reduction. ACS Appl. Mater. Interfaces 10, 30172–30179 (2018)

    Article  CAS  PubMed  Google Scholar 

  41. Liang, H., et al.: Co-immobilization of multiple enzymes by metal coordinated nucleotide hydrogel nanofibers: improved stability and an enzyme cascade for glucose detection. Nanoscale 8, 6071–6078 (2016)

    Article  CAS  PubMed  Google Scholar 

  42. Chen, Y.-A., et al.: Fast and effective turn-on paper-based phosphorescence biosensor for detection of glucose in serum. J. Chin. Chem. Soc. Taip. 63, 424–431 (2016)

    Article  CAS  Google Scholar 

  43. Hervas Perez, J.P., Lopez-Ruiz, B., Lopez-Cabarcos, E.: Synthesis and characterization of microparticles based on poly-methacrylic acid with glucose oxidase for biosensor applications. Talanta 149, 310–318 (2016)

    Article  CAS  PubMed  Google Scholar 

  44. Lu, Z., et al.: Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo2O4 nanoflowers decorated 3D nitrogen doped holey graphene hydrogel. Mater. Sci. Eng. C Mater. Biol. Appl. 102, 708–717 (2019)

    Article  CAS  PubMed  Google Scholar 

  45. Wang, B., Li, S., Liu, J., Yu, M.: Preparation of nickel nanoparticle/graphene composites for non-enzymatic electrochemical glucose biosensor applications. Mater. Res. Bull. 49, 521–524 (2014)

    Article  CAS  Google Scholar 

  46. Song, S., et al.: Peroxidase mimetic activity of Fe3O4 nanoparticle prepared based on magnetic hydrogels for hydrogen peroxide and glucose detection. J. Colloid Interface Sci. 506, 46–57 (2017)

    Article  CAS  PubMed  Google Scholar 

  47. Liu, X., et al.: Peroxidase-like activity of smart nanomaterials and their advanced application in colorimetric glucose biosensors. Small 15, e1900133 (2019)

    Article  PubMed  Google Scholar 

  48. Zhao, J., et al.: A facile gold nanoparticles embeded hydrogel for non-enzymatic sensing of glucose. Colloids Surf. B Biointerfaces 183, 110404 (2019)

    Article  CAS  PubMed  Google Scholar 

  49. Sengupta, P., Pramanik, K., Datta, P., Sarkar, P.: Chemically modified carbon nitride-chitin-acetic acid hybrid as a metal-free bifunctional nanozyme cascade of glucose oxidase-peroxidase for “click off” colorimetric detection of peroxide and glucose. Biosens. Bioelectron. 154, 112072 (2020)

    Article  CAS  PubMed  Google Scholar 

  50. Ghobashy, M.M., Mohamed, T.M.: Radiation crosslinking of acrylic acid/acrylonitrile–silver nitrate hydrogel as a sensitive glucose nanosensor. Polym. Bull. 76, 6245–6255 (2019)

    Article  CAS  Google Scholar 

  51. Marquez, A., et al.: Reconfigurable multiplexed point of care system for monitoring type 1 diabetes patients. Biosens. Bioelectron. 136, 38–46 (2019)

    Article  CAS  PubMed  Google Scholar 

  52. Brownlee, M., Cerami, A.: Glucose-controlled insulin-delivery system—semi-synthetic insulin bound to lectin. Science 206, 1190–1191 (1979)

    Article  CAS  PubMed  Google Scholar 

  53. Yin, R., Tong, Z., Yang, D., Nie, J.: Glucose and pH dual-responsive concanavalin A based microhydrogels for insulin delivery. Int. J. Biol. Macromol. 49, 1137–1142 (2011)

    Article  CAS  PubMed  Google Scholar 

  54. Li, Q., Guan, Y., Zhang, Y.: Thin hydrogel films based on lectin-saccharide biospecific interaction for label-free optical glucose sensing. Sens. Actuator B Chem. 272, 243–251 (2018)

    Article  CAS  Google Scholar 

  55. Sun, X.T., et al.: Multitarget sensing of glucose and cholesterol based on Janus hydrogel microparticles. Biosens. Bioelectron. 92, 81–86 (2017)

    Article  CAS  PubMed  Google Scholar 

  56. Wu, Q., et al.: Organization of glucose-responsive systems and their properties. Chem. Rev. 111, 7855–7875 (2011)

    Article  CAS  PubMed  Google Scholar 

  57. Steiner, M.S., Duerkop, A., Wolfbeis, O.S.: Optical methods for sensing glucose. Chem. Soc. Rev. 40, 4805–4839 (2011)

    Article  CAS  PubMed  Google Scholar 

  58. Kim, J.J., Park, K.: Modulated insulin delivery from glucose-sensitive hydrogel dosage forms. J. Control. Release 77, 39–47 (2001)

    Article  CAS  PubMed  Google Scholar 

  59. Vyas, N.K., Vyas, M.N., Quiocho, F.A.: Sugar and signal-transducer binding-sites of the Escherichia coli galactose chemoreceptor protein. Science 242, 1290–1295 (1988)

    Article  CAS  PubMed  Google Scholar 

  60. Borrok, M.J., Kiessling, L.L., Forest, K.T.: Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures. Protein Sci. 16, 1032–1041 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ehrick, J.D., et al.: Glucose responsive hydrogel networks based on protein recognition. Macromol. Biosci. 9, 864–868 (2009)

    Article  CAS  PubMed  Google Scholar 

  62. Cai, Z., et al.: Photonic crystal protein hydrogel sensor materials enabled by conformationally induced volume phase transition. Chem. Sci. 7, 4557–4562 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Asher, S.A., et al.: Photonic crystal carbohydrate sensors: low ionic strength sugar sensing. J. Am. Chem. Soc. 125, 3322–3329 (2003)

    Article  CAS  PubMed  Google Scholar 

  64. Brooks, W.L.A., Sumerlin, B.S.: Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev. 116, 1375–1397 (2016)

    Article  CAS  PubMed  Google Scholar 

  65. Elshaarani, T., et al.: Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. J. Mater. Chem. B 6, 3831–3854 (2018)

    Article  CAS  PubMed  Google Scholar 

  66. Muscatello, M.M.W., Stunja, L.E., Asher, S.A.: Polymerized crystalline colloidal array sensing of high glucose concentrations. Anal. Chem. 81, 4978–4986 (2009)

    Article  PubMed  Google Scholar 

  67. Zhang, Y., et al.: Response of photonic crystal hydrogels to carbohydrate and polyhydroxy alcohols. React. Funct. Polym. 148, 104504 (2020)

    Article  CAS  Google Scholar 

  68. Hisamitsu, I., Kataoka, K., Okano, T., Sakurai, Y.: Glucose-responsive gel from phenylborate polymer and poly(vinyl alcohol): prompt response at physiological pH through the interaction of borate with amine group in the gel. Pharm. Res. 14, 289–293 (1997)

    Article  CAS  PubMed  Google Scholar 

  69. Norrild, J.C., Søtofte, I.: Design, synthesis and structure of new potential electrochemically active boronic acid-based glucose sensors. J. Chem. Soc. Perkin Trans. 2(2), 303–311 (2002)

    Article  Google Scholar 

  70. Zhang, C., Losego, M.D., Braun, P.V.: Hydrogel-based glucose sensors: effects of phenylboronic acid chemical structure on response. Chem. Mater. 25, 3239–3250 (2013)

    Article  CAS  Google Scholar 

  71. Cao, Z., Nandhikonda, P., Heagy, M.D.: Highly water-soluble monoboronic acid probes that show optical sensitivity to glucose based on 4-sulfo-1, 8-naphthalic anhydride. J. Org. Chem. 74, 3544–3546 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Li, W., Xiang, J., Men, D., Zhang, H.: 2D Au nanosphere arrays/PVA-PBA-modified-hydrogel composite film for glucose detection with strong diffraction intensity and linear response. Nanomaterials (Basel) 9, 140 (2019)

    Article  CAS  Google Scholar 

  73. Guan, Y., Zhang, Y.: Boronic acid-containing hydrogels: synthesis and their applications. Chem. Soc. Rev. 42, 8106–8121 (2013)

    Article  CAS  PubMed  Google Scholar 

  74. Ruan, J.L., et al.: A gelated colloidal crystal attached lens for noninvasive continuous monitoring of tear glucose. Polymers (Basel) 9, 125 (2017)

    Article  Google Scholar 

  75. Zhao, J., Liu, P., Liu, Y.: Adjustable tribological behavior of glucose-sensitive hydrogels. Langmuir 34, 7479–7487 (2018)

    Article  CAS  PubMed  Google Scholar 

  76. Wang, H., Yi, J., Yu, Y., Zhou, S.: NIR upconversion fluorescence glucose sensing and glucose-responsive insulin release of carbon dot-immobilized hybrid microgels at physiological pH. Nanoscale 9, 509–516 (2017)

    Article  CAS  PubMed  Google Scholar 

  77. Dou, Q., et al.: High performance boronic acid-containing hydrogel for biocompatible continuous glucose monitoring. RSC Adv. 7, 41384–41390 (2017)

    Article  CAS  Google Scholar 

  78. Daikuzono, C.M., et al.: Impedance spectroscopy for monosaccharides detection using responsive hydrogel modified paper-based electrodes. Analyst 142, 1133–1139 (2017)

    Article  CAS  PubMed  Google Scholar 

  79. Jiang, N., et al.: Laser interference lithography for the nanofabrication of stimuli-responsive Bragg stacks. Adv. Funct. Mater. 28, 1702715 (2017)

    Article  Google Scholar 

  80. Bruen, D., Delaney, C., Diamond, D., Florea, L.: Fluorescent probes for sugar detection. ACS Appl. Mater. Interfaces 10, 38431–38437 (2018)

    Article  CAS  PubMed  Google Scholar 

  81. Elsherif, M., Hassan, M.U., Yetisen, A.K., Butt, H.: Glucose sensing with phenylboronic acid functionalized hydrogel-based optical diffusers. ACS Nano 12, 2283–2291 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Elsherif, M., Hassan, M.U., Yetisen, A.K., Butt, H.: Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12, 5452–5462 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dautta, M., Alshetaiwi, M., Escobar, J., Tseng, P.: Passive and wireless, implantable glucose sensing with phenylboronic acid hydrogel-interlayer RF resonators. Biosens. Bioelectron. 151, 112004 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kim, D., Koh, Y.G., Lee, W.: Inverse opal photonic gel containing charge stabilized boronate anions for glucose sensing at physiological pH. Phys. Status Solidi RRL 13, 1800416 (2019)

    Article  Google Scholar 

  85. Wiskur, S.L., et al.: pKa values and geometries of secondary and tertiary amines complexed to boronic acids implications for sensor design. Org. Lett. 3, 1311–1314 (2001)

    Article  CAS  PubMed  Google Scholar 

  86. Matsumoto, A., Yoshida, R., Kataoka, K.: Glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety operating at the physiological pH. Biomacromol 5, 1038–1045 (2004)

    Article  CAS  Google Scholar 

  87. Chen, C., et al.: 2D photonic crystal hydrogel sensor for tear glucose monitoring. ACS Omega 3, 3211–3217 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Vezouviou, E., Lowe, C.R.: A near infrared holographic glucose sensor. Biosens. Bioelectron. 68, 371–381 (2015)

    Article  CAS  PubMed  Google Scholar 

  89. James, T.D., Sandanayake, K., Shinkai, S.: A glucose-selective molecular fluorescence sensor. Angew. Chem. Int. Ed. Engl. 33, 2207–2209 (1994)

    Article  Google Scholar 

  90. Xu, W., et al.: Synthesis of polymer macrogels with rapid and significant response to glucose concentration changes. RSC Adv. 7, 55945–55956 (2017)

    Article  CAS  Google Scholar 

  91. Rico-Yuste, A., Carrasco, S.: Molecularly imprinted polymer-based hybrid materials for the development of optical sensors. Polymers (Basel) 11, 1173 (2019)

    Article  Google Scholar 

  92. Vasapollo, G., et al.: Molecularly imprinted polymers: present and future prospective. Int. J. Mol. Sci. 12, 5908–5945 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhu, Q., et al.: Synthesis of molecularly imprinted polymer via visible light activated RAFT polymerization in aqueous media at room temperature for highly selective electrochemical assay of glucose. Macromol. Chem. Phys. 218, 1700141 (2017)

    Article  Google Scholar 

  94. Marquez, A., Jimenez-Jorquera, C., Dominguez, C., Munoz-Berbel, X.: Electrodepositable alginate membranes for enzymatic sensors: an amperometric glucose biosensor for whole blood analysis. Biosens. Bioelectron. 97, 136–142 (2017)

    Article  CAS  PubMed  Google Scholar 

  95. Kajisa, T., Sakata, T.: Glucose-responsive hydrogel electrode for biocompatible glucose transistor. Sci. Technol. Adv. Mater. 18, 26–33 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Miyata, T., Uragami, T., Nakamae, K.: Biomolecule-sensitive hydrogels. Adv. Drug Deliv. Rev. 54, 79–98 (2002)

    Article  CAS  PubMed  Google Scholar 

  97. Xu, Y., et al.: Emerging barcode particles for multiplex bioassays. Sci. China Mater. 62, 289–324 (2018)

    Article  Google Scholar 

  98. Inan, H., et al.: Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem. Soc. Rev. 46, 366–388 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Alexeev, V.L., Das, S., Finegold, D.N., Asher, S.A.: Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clin. Chem. 50, 2353–2360 (2004)

    Article  CAS  PubMed  Google Scholar 

  100. Li, X., et al.: PNIPAM-based colloidal photonic crystals above phase transition temperature and its application in naked-eye glucose-detection. Eur. Polym. J. 120, UNSP109230 (2019)

    Article  Google Scholar 

  101. Ma, Y., et al.: Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. Analyst 143, 1679–1684 (2018)

    Article  CAS  PubMed  Google Scholar 

  102. Odaci, D., et al.: Fluorescence sensing of glucose using glucose oxidase modified by PVA-Pyrene prepared via “Click” chemistry. Biomacromol 10, 2928–2934 (2009)

    Article  CAS  Google Scholar 

  103. Sanjay, S.T., et al.: Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 140, 7062–7081 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. He, R.-Y., et al.: Paper-based microfluidic devices based on 3D network polymer hydrogel for the determination of glucose in human whole blood. RSC Adv. 9, 32367–32374 (2019)

    Article  CAS  Google Scholar 

  105. Jia, S., Tang, Z., Guan, Y., Zhang, Y.: Order-disorder transition in doped microgel colloidal crystals and its application for optical sensing. ACS Appl. Mater. Interfaces 10, 14254–14258 (2018)

    Article  CAS  PubMed  Google Scholar 

  106. Mesch, M., Zhang, C., Braun, P.V., Giessen, H.: Functionalized hydrogel on plasmonic nanoantennas for noninvasive glucose sensing. ACS Photon. 2, 475–480 (2015)

    Article  CAS  Google Scholar 

  107. Mac Kenna, N., Calvert, P., Morrin, A.: Impedimetric transduction of swelling in pH-responsive hydrogels. Analyst 140, 3003–3011 (2015)

    Article  CAS  PubMed  Google Scholar 

  108. Pinyou, P., et al.: Thermoresponsive amperometric glucose biosensor. Biointerphases 11, 011001 (2015)

    Article  PubMed  Google Scholar 

  109. Zhang, Z., et al.: A dielectric affinity glucose microsensor using hydrogel-functionalized coplanar electrodes. Microfluid Nanofluidics 21, 93 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wu, M., et al.: A smart hydrogel system for visual detection of glucose. Biosens. Bioelectron. 142, 111547 (2019)

    Article  CAS  PubMed  Google Scholar 

  111. Li, M., Zhang, H., Liu, M., Dong, B.: Motion-based glucose sensing based on a fish-like enzymeless motor. J. Mater. Chem. C 5, 4400–4407 (2017)

    Article  CAS  Google Scholar 

  112. Geng, C., et al.: 3D hybrid plasmonic photonic crystals by colloidal-crystal templating and hydrogel-assisted conformal metal etching. Adv. Opt. Mater. 7, 1900599 (2019)

    Article  CAS  Google Scholar 

  113. Homola, J.: Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 377, 528–539 (2003)

    Article  CAS  PubMed  Google Scholar 

  114. Singh, N., Vora, H.S.: The spectral measurement of a high repetition rate tunable dye laser output using Fabry–Perot fringe. Opt. Laser Technol. 39, 733–737 (2007)

    Article  Google Scholar 

  115. Feng, X., Xu, J., Liu, Y., Zhao, W.: Visual sensors of an inverse opal hydrogel for the colorimetric detection of glucose. J. Mater. Chem. B 7, 3576–3581 (2019)

    Article  CAS  Google Scholar 

  116. Li, Y., et al.: Multifunctional biosensor based on self-assembled multi-walled carbon nanotubes sponge. J. Mater. Sci. Mater. Electron. 27, 6911–6917 (2016)

    Article  CAS  Google Scholar 

  117. Li, Z., Zhu, B., Duan, X., Tang, W.: The imaging of local glucose levels in tumor periphery via peroxyoxalate chemiluminescent nanoparticle-glucose oxidase-oped alginate hydrogel. Anal. Methods 11, 2763–2768 (2019)

    Article  CAS  Google Scholar 

  118. Thennadil, S.N., et al.: Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels. Diabetes Technol. Ther. 3, 357–365 (2001)

    Article  CAS  PubMed  Google Scholar 

  119. He, R., et al.: A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid. Adv. Healthc. Mater. 9, e1901201 (2020)

    Article  PubMed  Google Scholar 

  120. Li, W., et al.: Rapidly separable microneedle patch for the sustained release of a contraceptive. Nat. Biomed. Eng. 3, 220–229 (2019)

    Article  CAS  PubMed  Google Scholar 

  121. Wang, P.M., Cornwell, M., Prausnitz, M.R.: Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Ther. 7, 131–141 (2005)

    Article  CAS  PubMed  Google Scholar 

  122. Caffarel-Salvador, E., et al.: Hydrogel-forming microneedle arrays allow detection of drugs and glucose in vivo: potential for use in diagnosis and therapeutic drug monitoring. PLoS ONE 10, e0145644 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  123. Scognamiglio, V., Arduini, F.: The technology tree in the design of glucose biosensors. TrAC 120, 115642 (2019)

    CAS  Google Scholar 

  124. Kim, G.J., Yoon, K.J., Kim, K.O.: Glucose-responsive poly(vinyl alcohol)/β-cyclodextrin hydrogel with glucose oxidase immobilization. J. Mater. Sci. 54, 12806–12817 (2019)

    Article  CAS  Google Scholar 

  125. Le, L.V., et al.: Near-infrared optical nanosensors for continuous detection of glucose. J. Diabetes Sci. Technol. 14, 204–211 (2020)

    Article  CAS  PubMed  Google Scholar 

  126. Vinita, N.N.R., Prakash, R.: One step synthesis of AuNPs@MoS 2—QDs composite as a robust peroxidase—mimetic for instant unaided eye detection of glucose in serum, saliva and tear. Sens. Actuator B Chem. 263, 109–119 (2018)

    Article  CAS  Google Scholar 

  127. Wang, Y., Zhao, Q., Du, X.: Structurally coloured contact lens sensor for point-of-care ophthalmic health monitoring. J. Mater. Chem. B 8, 3519–3526 (2020)

    Article  CAS  PubMed  Google Scholar 

  128. Lan, Y., Xue, M., Qiu, L., Meng, Z.: Clinical evaluation of a photonic crystal sensor for glucose monitoring in urine. ChemistrySelect 4, 6547–6551 (2019)

    Article  CAS  Google Scholar 

  129. Yan, Z., et al.: A non-enzymatic urine glucose sensor with 2-D photonic crystal hydrogel. Anal Bioanal Chem 408, 8317–8323 (2016)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the Key Research and Development Plan Project of Anhui Province (no. 1704a0802157) and the Key-Area Research and Development Program of Guangdong Province (no. 2019B020219003).

Author information

Authors and Affiliations

Authors

Contributions

NG wrote the manuscript under the supervision of HY, all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Hui You.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, N., You, H. Recent Applications of Point-of-Care Devices for Glucose Detection on the Basis of Stimuli-Responsive Volume Phase Transition of Hydrogel. BioChip J 15, 23–41 (2021). https://doi.org/10.1007/s13206-021-00001-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-021-00001-8

Keywords

Navigation