Skip to main content

Advertisement

Log in

Pumpless three-dimensional photo paper–based microfluidic analytical device for automatic detection of thioredoxin-1 using enzyme-linked immunosorbent assay

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Microfluidic-based biosensors have been developed for their precise automatic reaction control. However, these biosensors require external devices that are difficult to transport and use. To overcome this disadvantage, our group made an easy-to-use, cheap, and light pumpless three-dimensional photo paper–based microfluidic analytical device (3D-μPAD; weight: 1.5 g). Unlike conventional paper-based microfluidic analytical devices, the 3D-μPAD can be used to control fluid flow in a 3D manner, thus allowing sophisticated multi-step reaction control. This device can control fluid flow speed and direction accurately using only the capillary-driven flow without an external device like a pump. The flow speed is controlled by the width of the microfluidic channel and its surface property. In addition, fluid speed control and 3D-bridge structure enable the control of fluid flow direction. Using these methods, multi-step enzyme-linked immunosorbent assay (ELISA) can be done automatically in sequence by injecting solutions (sample, washing, and enzyme’s substrate) at the same time in the 3D-μPAD. All the steps can be performed in 14 min, and data can be analyzed immediately. To test this device, thioredoxin-1 (Trx-1), a biomarker of breast cancer, is used as the target. In the 3D-μPAD, it can detect 0–200 ng/mL of Trx-1, and the prepared 3D-μPAD Trx-1 sensor displays excellent selectivity. Moreover, by analyzing the concentration of Trx-1 in real patients and healthy individuals’ blood serum samples using the 3D-μPAD, and comparing results to ELISA, it can be confirmed that the 3D-μPAD is a good tool for cancer diagnosis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitchell KR, Esene JE, Woolley AT. Advances in multiplex electrical and optical detection of biomarkers using microfluidic devices. Anal Bioanal Chem. 2021. https://doi.org/10.1007/s00216-021-03553-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hernández-Rodríguez JF, Rojas D, Escarpa A. Rapid and cost-effective benchtop microfabrication of disposable carbon-based electrochemical microfluidic devices. Sens Actuators B Chem. 2020;324: 128679. https://doi.org/10.1016/j.snb.2020.128679.

    Article  CAS  Google Scholar 

  3. Zhuang JJ, Yin JX, Lv SW, Wang B, Mu Y. Advanced “lab-on-a-chip” to detect viruses - current challenges and future perspectives. Biosens Bioelectron. 2020;163. https://doi.org/10.1016/j.bios.2020.112291

  4. Dekker S, Buesink W, Blom M, Alessio M, Verplanck N, Hihoud M, et al. Standardized and modular microfluidic platform for fast lab on chip system development. Sens Actuators B Chem. 2018;272:468–78. https://doi.org/10.1016/j.snb.2018.04.005.

    Article  CAS  Google Scholar 

  5. Ye WQ, Wei YX, Zhang YZ, Yang CG. Xu ZR Multiplexed detection of micro-RNAs based on microfluidic multi-color fluorescence droplets. Anal Bioanal Chem. 2020;412(3):647–55. https://doi.org/10.1007/s00216-019-02266-3.

    Article  CAS  PubMed  Google Scholar 

  6. Godinez-Brizuela OE, Niasar VJ. Simultaneous pressure and electro-osmosis driven flow in charged porous media: pore-scale effects on mixing and dispersion. J Colloid Interface Sci. 2020;561:162–72. https://doi.org/10.1016/j.jcis.2019.11.084.

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Kim CJ. Current commercialization status of electrowetting-on-dielectric (EWOD) digital microfluidics. Lab Chip. 2020;20(10):1705–12. https://doi.org/10.1039/D0LC00144A.

    Article  CAS  PubMed  Google Scholar 

  8. Wang ML, Song ZH, Jiang YW, Zhang XL, Wang L, Zhao HY, Cui YT, Gu FR, Wang YH, Zheng GX. A three-dimensional pinwheel-shaped paper-based microfluidic analytical device for fluorescence detection of multiple heavy metals in coastal waters by rational device design. Anal Bioanal Chem. 2021;413(12):3299–313. https://doi.org/10.1007/s00216-021-03269-9.

    Article  CAS  PubMed  Google Scholar 

  9. Jin L, Hao Z, Zheng Q, Chen H, Zhu L, Wang C, et al. A facile microfluidic paper-based analytical device for acetylcholinesterase inhibition assay utilizing organic solvent extraction in rapid detection of pesticide residues in food. Anal Chim Acta. 2020;1100:215–24. https://doi.org/10.1016/j.aca.2019.11.067.

    Article  CAS  PubMed  Google Scholar 

  10. Calabria D, Calabretta MM, Zangheri M, Marchegiani E, Trozzi I, Guardigli M, et al. Recent advancements in enzyme-based lateral flow immunoassays. Sensors. 2021;21(10):3358. https://doi.org/10.3390/s21103358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharifi H, Tashkhourian J, Hemmateenejad B. A 3D origami paper-based analytical device combined with PVC membrane for colorimetric assay of heavy metal ions: application to determination of Cu(II) in water samples. Anal Chim Acta. 2020;1126:114–23. https://doi.org/10.1016/j.aca.2020.06.006.

    Article  CAS  PubMed  Google Scholar 

  12. Noiphung J, Laiwattanapaisal W. Multifunctional paper-based analytical device for in situ cultivation and screening of Escherichia coli infections. Sci Rep. 2019;9(1):1555. https://doi.org/10.1038/s41598-018-38159-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Preechakasedkit P, Siangproh W, Khongchareonporn N, Ngamrojanavanich N, Chailapakul O. Development of an automated wax-printed paper-based lateral flow device for alpha-fetoprotein enzyme-linked immunosorbent assay. Biosens Bioelectron. 2018;102:27–32. https://doi.org/10.1016/j.bios.2017.10.051.

    Article  CAS  PubMed  Google Scholar 

  14. Shangguan J-W, Liu Y, Wang S, Hou Y-X, Xu B-Y, Xu J-J, et al. Paper capillary enables effective sampling for microfluidic paper analytical devices. Acs Sens. 2018;3(7):1416–23. https://doi.org/10.1021/acssensors.8b00335.

    Article  CAS  PubMed  Google Scholar 

  15. Shou D, Fan J. Design of nanofibrous and microfibrous channels for fast capillary flow. Langmuir. 2018;34(4):1235–41. https://doi.org/10.1021/acs.langmuir.7b01797.

    Article  CAS  PubMed  Google Scholar 

  16. Glavan AC, Martinez RV, Maxwell EJ, Subramaniam AB, Nunes RMD, Soh S, et al. Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic R-F paper. Lab Chip. 2013;13(15):2922–30. https://doi.org/10.1039/C3LC50371B.

    Article  CAS  PubMed  Google Scholar 

  17. Yukird J, Soum V, Kwon OS, Shin K, Chailapakul O, Rodthongkum N. 3D paper-based microfluidic device: a novel dual-detection platform of bisphenol A. Analyst. 2020;145(4):1491–8. https://doi.org/10.1039/C9AN01738K.

    Article  CAS  PubMed  Google Scholar 

  18. Songok J, Toivakka M. Enhancing capillary-driven flow for paper-based microfluidic channels. ACS Appl Mater Interfaces. 2016;8(44):30523–30. https://doi.org/10.1021/acsami.6b08117.

    Article  CAS  PubMed  Google Scholar 

  19. Hemmig E, Temiz Y, Gökçe O, Lovchik RD, Delamarche E. Transposing lateral flow immunoassays to capillary-driven microfluidics using self-coalescence modules and capillary-assembled receptor carriers. Anal Chem. 2020;92(1):940–6. https://doi.org/10.1021/acs.analchem.9b03792.

    Article  CAS  PubMed  Google Scholar 

  20. Hassan S-u, Zhang X. Design and fabrication of capillary-driven flow device for point-of-care diagnostics. Biosensors. 2020;10(4):39. https://doi.org/10.3390/bios10040039

  21. Soum V, Park S, Brilian AI, Kwon O-S, Shin K. Programmable paper-based microfluidic devices for biomarker detections. Micromachines-Basel. 2019;10(8):516. https://doi.org/10.3390/mi10080516.

    Article  PubMed Central  Google Scholar 

  22. Soum V, Park S, Brilian AI, Choi JY, Lee Y, Kim W, et al. Quantitatively controllable fluid flows with ballpoint-pen-printed patterns for programmable photo-paper-based microfluidic devices. Lab Chip. 2020;20(9):1601–11. https://doi.org/10.1039/D0LC00115E.

    Article  CAS  PubMed  Google Scholar 

  23. Ma L, Abugalyon Y, Li XJ. Multicolorimetric ELISA biosensors on a paper/polymer hybrid analytical device for visual point-of-care detection of infection diseases. Anal Bioanal Chem. 2021;413(18):4655–63. https://doi.org/10.1007/s00216-021-03359-8.

    Article  CAS  PubMed  Google Scholar 

  24. Zhan S, Zheng L, Zhou Y, Wu K, Duan H, Huang X, et al. A gold growth-based plasmonic ELISA for the sensitive detection of fumonisin B1 in maize. Toxins. 2019;11(6):323. https://doi.org/10.3390/toxins11060323.

    Article  CAS  PubMed Central  Google Scholar 

  25. Shang C, Wang Z, Liu H. A terminal antibody method based on multiple factors that influence ELISA results for measurement of antibody affinity in clinical specimens. J Virol Methods. 2017;240:42–8. https://doi.org/10.1016/j.jviromet.2016.11.009.

    Article  CAS  PubMed  Google Scholar 

  26. Park B-J, Cha M-K, Kim I-H. Thioredoxin 1 as a serum marker for breast cancer and its use in combination with CEA or CA15-3 for improving the sensitivity of breast cancer diagnoses. BMC Res Notes. 2014;7(1):7. https://doi.org/10.1186/1756-0500-7-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu YP, Zhao Y, Wei ZH, Tao L, Sheng XB, Wang SL, et al. Targeting thioredoxin system with an organosulfur compound, diallyl trisulfide (DATS), attenuates progression and metastasis of triple-negative breast cancer (TNBC). Cell Physiol Biochem. 2018;50(5):1945–63. https://doi.org/10.1159/000494874.

    Article  CAS  PubMed  Google Scholar 

  28. Lee MJ, Yeom J, Choi JH, Shin JH, Kim TH, Jeon JW, et al. Pump-free glass-based capillary microfluidic immuno-assay chip for electrochemical detection of prostate-specific antigen. J Nanosci Nanotechnol. 2020;20(8):4629–33. https://doi.org/10.1166/jnn.2020.17831.

    Article  PubMed  Google Scholar 

  29. Park J. An optimized colorimetric readout method for lateral flow immunoassays. Sensors. 2018;18(12):4084. https://doi.org/10.3390/s18124084.

    Article  CAS  PubMed Central  Google Scholar 

  30. Dehus O, Zimmer J, Doring S, Fuhrer F, Hanschmann KM, Holzhauser T, Neske F, Strecker D, Trosemeier JH, Vieths S, Kaul S. Development and in-house validation of an allergen-specific ELISA for quantification of Bet v 4 in diagnostic and therapeutic birch allergen products. Anal Bioanal Chem. 2015;407(6):1673–83. https://doi.org/10.1007/s00216-014-8418-z.

    Article  CAS  PubMed  Google Scholar 

  31. Chaikhan P, Udnan Y, Sananmuang R, Ampiah-Bonney RJ, Chuachuad CW. A low-cost microfluidic paper-based analytical device (μPAD) with column chromatography preconcentration for the determination of paraquat in vegetable samples. Microchem J. 2020;159: 105355. https://doi.org/10.1016/j.microc.2020.105355.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through the program for the management of aquatic ecosystem health, funded by Korea Ministry of Environment (MOE) (2020003030001), and Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20214000000500, training program of CCUS for the green growth).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kwanwoo Shin or Byung-Keun Oh.

Ethics declarations

Ethics approval

The blood samples were obtained from “For YOU Moon’s” Maternity hospital. Written informed consent was obtained from each participant.

Conflict of interest

Sang-nam Lee was employed by the company Uniance Gene Inc. The remaining authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection Point-of-Care Testing with guest editors Oliver Hayden, Peter B. Luppa, and Junhong Min.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1796 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MJ., Soum, V., Lee, SN. et al. Pumpless three-dimensional photo paper–based microfluidic analytical device for automatic detection of thioredoxin-1 using enzyme-linked immunosorbent assay. Anal Bioanal Chem 414, 3219–3230 (2022). https://doi.org/10.1007/s00216-021-03747-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03747-0

Keywords

Navigation