Skip to main content
Log in

Volatile emission compounds from plant growth-promoting bacteria are responsible for the antifungal activity against F. solani

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

The aims of this work were to screen isolated bacteria with a dual capacity: to inhibit Fusarium solani and to promote plant growth. Also, volatile compounds that would be responsible for that effect were identified. Seventy bacterial strains from the air, agricultural soils, hydrocarbons-contaminated soils, and extremophile soils were tested. The former were identified by Matrix-Assisted Laser Desorption/Ionization-time of flight mass spectrometry and 16S rDNA sequencing. The plant growth-promoting bacteria (PGPB) and their capability for phosphate solubilization, siderophores production, and indole production were determined. Twenty isolates from Bacillus and Pseudomonas genera inhibited the mycelial growth up to 40% in direct assays. Eleven isolates significantly inhibited mycelial growth in 18–24% via volatile emissions. Volatile compounds related to antifungal activity or stress response include ketones, sesquiterpenes, monoterpenoids, alkanes, and fatty acids. Our results support the potential of these PGPB to act as biocontrol agents against fungal pathogens via volatile emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander DB, Zuberer DA (1991) Use of chromeazurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12(1):39–45. https://doi.org/10.1007/BF00369386

    Article  CAS  Google Scholar 

  • Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • APHA/AWWA/WEF (2012) Standard Methods for the Examination of Water and Wastewater. Standard Methods, 51. ISBN 9780875532356

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57(1):233–266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  PubMed  Google Scholar 

  • Bollet C, Gevaudan MJ, de Lamballerie X, Zandotti C, de Micco P (1991) A simple method for the isolation of chromosomal DNA from gram positive or acid-fast bacteria. Nucleic Acids Res 19(8):8893

    Article  Google Scholar 

  • Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJJ, Vicente A De, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103(5):1950–1959. https://doi.org/10.1111/j.1365-2672.2007.03433.x

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42(5):669–678. https://doi.org/10.1016/j.soilbio.2009.11.024

    Article  CAS  Google Scholar 

  • Dunlap CA, Lueschow S, Carrillo D, Rooney AP (2017) Screening of bacteria for antagonistic activity against phytopathogens of avocados. Plant Gene 11:17–22

    Article  Google Scholar 

  • Elkahoui S, Djébali N, Yaich N, Azaiez S, Hammami M, Essid R, Limam F (2015) Antifungal activity of volatile compounds-producing Pseudomonas P2 strain against Rhizoctonia solani. World J Microbiol Biotechnol 31(1):175–185. https://doi.org/10.1007/s11274-014-1772-3

    Article  CAS  PubMed  Google Scholar 

  • Figueroa-López AM, Cordero-Ramírez JD, Martínez-Álvarez JC, López-Meyer M, Lizárraga-Sánchez GJ, Félix-Gastélum R, Maldonado-Mendoza IE (2016) Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. SpringerPlus 5(1):330. https://doi.org/10.1186/s40064-016-1780-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Forbes BA, Sahm DF, Weissfeld AS (2002) Bailey & Scott’s diagnostic microbiology, 11th edn. Mosby Inc., St. Louis

    Google Scholar 

  • Guevara-Avendaño E, Carrillo JD, Ndinga-Muniania C, Moreno K, Méndez-Bravo A, Guerrero-Analco JA, Reverchon F (2018) Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 111(4):563–572. https://doi.org/10.1007/s10482-017-0977-5

    Article  CAS  Google Scholar 

  • Hugenholtz P, Goebel BM (2001) The polymerase chain reaction as a tool to investigate microbial diversity. In Rochelle PA (ed) Environmental molecular microbiology: protocols and applications.

  • Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81(3):821–830. https://doi.org/10.1128/AEM.02999-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idris HA, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control 40(1):97–106. https://doi.org/10.1016/j.biocontrol.2006.07.017

    Article  Google Scholar 

  • Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012. https://doi.org/10.1007/s00253-008-1760-3

    Article  CAS  PubMed  Google Scholar 

  • Kramer R, Abraham W (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11(March):15–37. https://doi.org/10.1007/s11101-011-9216-2

    Article  CAS  Google Scholar 

  • López-Bucio J, Campos-Cuevas JC, Hernández-Calderón E, Velásquez-Becerra C, Farias-Rodríguez R, Macías-Rodríguez L (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant-Microbe Interact 20(2):207–217

    Article  Google Scholar 

  • Méndez-Bravo A, Cortazar-Murillo EM, Guevara-Avendaño E, Ceballos-Luna O, Rodríguez-Haas B, Kiel-Martínez AL, Reverchon F (2018) Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS One 13(3):1–18. https://doi.org/10.1371/journal.pone.0194665

    Article  CAS  Google Scholar 

  • Mnasri N, Chennaoui C, Gargouri S, Mhamdi R, Hessini K, Elkahoui S, Djébali N (2017) Efficacy of some rhizospheric and endophytic bacteria in vitro and as seed coating for the control of Fusarium culmorum infecting durum wheat in Tunisia. Eur J Plant Pathol 147(3):501–515. https://doi.org/10.1007/s10658-016-1018-3

    Article  CAS  Google Scholar 

  • Nandi M, Selin C, Brassinga AKC, Belmonte MF, Fernando WGD, Loewen PC, De Kievit TR (2015) Pyrrolnitrin and hydrogen cyanide production by Pseudomonas chlororaphis strain PA23 exhibits nematicidal and repellent activity against Caenorhabditis elegans. PLoS One 10(4):1–19. https://doi.org/10.1371/journal.pone.0123184

    Article  CAS  Google Scholar 

  • Pan D, Mionetto A, Tiscornia S, Bettucci L (2015) Endophytic bacteria from wheat grain as biocontrol agents of Fusarium graminearum and deoxynivalenol production in wheat. Mycotoxin Res 31(3):137–143. https://doi.org/10.1007/s12550-015-0224-8

    Article  CAS  PubMed  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci USA 110(16):6548–6553. https://doi.org/10.1073/pnas.1302837110

    Article  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789

    Article  CAS  Google Scholar 

  • Przemieniecki SW, Pawe T, Kotlarz K, Krawczyk K, Damszel M, Pszczó A, Mastalerz J (2019) Bacteria isolated from treated wastewater for biofertilization and crop protection against Fusarium spp. pathogens. J Soil Sci Plant Nutr 19:1–11

    Article  CAS  Google Scholar 

  • Raza W, Ling N, Yang L, Huang Q, Shen Q (2016) Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci Rep 6:24856

    Article  CAS  Google Scholar 

  • Rocca M, Prieto M, Almuzara M, Barberis C, Vay C (2018) Manual for interpretation of MALDI-TOF results (Bruker Daltonics). Buenos Aires, Argentina [In Spanish]

    Google Scholar 

  • Sarbadhikary SB, Mandal NC (2017) Field application of two plant growth promoting rhizobacteria with potent antifungal properties. Rhizosphere 3(1):170–175

    Article  Google Scholar 

  • Siddiqui ZA (2006) PGPR: biocontrol and biofertilization. Department of Botany, Aligarh Muslim University, Aligarh

    Book  Google Scholar 

  • Singh S, Gupta G, Khare E, Behal KK, Arora NK (2014) Effect of enrichment material on the shelf life and field efficiency of bioformulation of Rhizobium sp. and P-solubilizing Pseudomonas fluorescens. Sci Res Rep 4(1):44–50

    Google Scholar 

  • Stout J, Huang SW, Calvin L, Lucier G, Perez A, Pollack S (2014) NAFTA trade in fruits and vegetables. In: Wu HS (eds) Global trade patterns in fruits and vegetables. Agriculture and Trade Report Number: WRS-04-06; United States Department of Agriculture: Washington, DC, USA, pp 39–51

  • Sundara Rao WVB, Sinha MK (1963a) Phosphate dissolving micro-organisms in the soil and rhizosphere. Indian J Agric Sci 33(1963):272–278

    Google Scholar 

  • Sundara Rao WVB, Sinha MK (1963b) Phosphate dissolving organisms in the soil and the rhizosphere. Indian J Agric Sci 33:272–278

    Google Scholar 

  • Umeda C, Eskalen A, Paine T (2016) Chapter 26. Polyphagous shot hole borer and Fusarium dieback in California. In: Paine TD, Lieutier F (eds) Insects and diseases of mediterranean forest systems. Springer International Publishing, Switzerland. https://doi.org/10.1007/978-3-319-24744-1_26

  • Urrea R, Cabezas L, Sierra R, Cárdenas M, Restrepo S, Jiménez P (2011) Selection of antagonistic bacteria isolated from the Physalis peruviana rhizosphere against Fusarium oxysporum. J Appl Microbiol 111(3):707–716. https://doi.org/10.1111/j.1365-2672.2011.05092.x

    Article  CAS  PubMed  Google Scholar 

  • Vinodkumar S, Nakkeeran S, Renukadevi P, Malathi VG (2017) Biocontrol potentials of antimicrobial peptide producing Bacillus species: multifaceted antagonists for the management of stem rot of carnation caused by Sclerotinia sclerotiorum. Front Microbiol 8(MAR):1–13. https://doi.org/10.3389/fmicb.2017.00446

    Article  Google Scholar 

  • Weller DM, Van Pelt JA, Mavrodi DV, Pieterse CMJ, Bakker PAHM, Van Loon LC (2004) Induced systemic resistance (ISR) in Arabidopsis against Pseudomonas syringae pv. tomato by 2, 4-diacetylphloroglucinol (DAPG)-producing Pseudomonas. Phytopathology 94:S108

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot. https://doi.org/10.1093/aob/mci083

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan J, Raza W, Shen Q, Huang Q (2012) Antifungal Activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl Environ Microbiol 78(16):5942–5944. https://doi.org/10.1128/aem.01357-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Fernando WGD (2004) Presence of biosynthetic genes for phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol and pyrrolnitrin in Pseudomonas chlororaphis strain PA-23. Can J Plant Pathol 26:430–431

    Article  Google Scholar 

Download references

Acknowledgements

A. Gutierrez-Santa Ana acknowledges the support through fellowship (720742) of Consejo Nacional de Ciencia y Tecnología (CONACYT), Mexico.

Funding

The present study was funded by the Fondo Institucional de Fomento Regional para el Desarrollo Científico, Tecnológico y de Innovación (FORDECYT) under the project 292399.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and experimental design were made by SMC-R and JBV-F. Experiments were mainly performed by AG-SA with the guidance, experiment design and help of JR-C (for chromatographical analysis and compound identification), MK (for MALDI-TOF identificaction) and JBV-F (MALDI-TOF identification, 16S identification and statistical analysis). HAC-C helped with microbial culture and confrontation of bacteria against F. solani. First draft was written by AG-SA and all authors read, revised, commented on previous versions. All authors whose names appear on the submission. (1) made substantial contributions to the design of the work, the acquisition, analysis, or interpretation of data; (2) approved the version to be published; and (3) agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to J. B. Velázquez-Fernández.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Santa Ana, A., Carrillo-Cerda, H.A., Rodriguez-Campos, J. et al. Volatile emission compounds from plant growth-promoting bacteria are responsible for the antifungal activity against F. solani. 3 Biotech 10, 292 (2020). https://doi.org/10.1007/s13205-020-02290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-02290-6

Keywords

Navigation